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Abstract 

The present thesis deals with the heat transfer and solidification of ductile and microalloyed grey cast
iron. Heterogeneous nucleation of nodular graphite at inclusions in ductile iron during eutectic 
solidification has been investigated. A series of ductile iron samples with two different inoculants in 
four different thicknesses has been produced and studied; chemical analysis, metallographic 
investigation and thermal analysis of the specimens have been carried out.
A numerical model for solidification of ductile iron has been implemented and the results (i.e. cooling 
curve, cooling rate, nodule count and fraction of solid phases) have shown a good agreement with 
experimental studies; following this, inoculation parameters in the model have been studied and 
discussed.
The effect of Ti and S on the microstructure of grey iron is studied. Optical and electron microscopy 
are used to examine the unetched, colour-etched and deep-etched samples. It was confirmed that in 
irons with high sulphur content (0.12 wt%) nucleation of type-A and type-D graphite occurs on Mn 
sulphides that have a core of complex Al, Ca, Mg oxide. An increased titanium level of 0.35% 
produced superfine interdendritic graphite (~10μm) at low (0.012 wt%) as well as at high S contents. 
Ti also caused increased segregation in the microstructure of the analysed irons and larger eutectic 
grains (cells). The inclusions have been identified in an effort to explain the nucleation of the phases 
of interest. The reasons for increase in the fraction of primary austenite and formation of superfine 
interdendritic graphite have been investigated using Thermocalc simulations and metallographic
studies. TiC did not appear to be a nucleation site for the primary austenite as it was found mostly at 
the periphery of the secondary arms of the austenite, in the last region to solidify. 
The superfine graphite which forms in this type of irons is short (10-20µm) and stubby. The 
microstructure of this kind of graphite flakes in titanium alloyed cast iron is studied using electron 
microscopy techniques. The methods to prepare samples of cast iron for comprehensive transmission 
electron microscopy of graphite and the surrounding iron matrix have been developed and explained. 
Dual beam microscopes are used for sample preparation. A TEM study has been carried out on 
graphite flakes in grey cast iron using selected area electron diffraction (SAED). Based on the SAED 
pattern analysis, crystallographic orientations are identified and compared. Subsequently, the 
orientation relationship between iron and graphite crystals at the interface is studied and discussed.
Based on this information, growth models for the platelets in the fine graphite flakes in cast iron are 
suggested and discussed.
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Chapter 1 

Introduction 

The solidification and graphitization of cast iron have been attracting many scientists over the 
last decades, but still the mechanism of formation of some types of graphite is not well 
understood. The graphite microstructure remains the most important factor influencing the 
required properties of cast iron [1] [2] [3]. Therefore, its exact characterization is one of the 
main indicators for mechanical properties [4]. 
Graphite morphology, size and distribution can be more or less efficiently controlled in the 
modern foundry industry using certain alloying elements and inoculation, as well as varying 
processing technology such as cooling rates and overheating of the melt [5]. Among all, 
addition of alloying elements is the main interest in this work, whereas small amounts of alloy 
elements in the cast iron can improve the depth of chill, hardness and strength. Moreover, alloy 
elements are responsible for the amount and shape of graphite precipitated in the casting, as well 
as for the constitution of the iron matrix and inclusions precipitated during solidification and 
subsequent cooling to room temperature [6]. 

1.1. Motivation of the work 

The main solidification parameters affecting the mechanical properties of hypoeutectic grey 
(lamellar graphite) irons include the fraction of primary austenite and the shape, size and 
distribution of graphite. In foundry practice they are controlled through the chemical 
composition (carbon equivalent and alloying elements) and inoculation. Recently, using 
appropriate titanium (Ti) addition in a low sulphur (S) 4% carbon equivalent grey iron, 
Larrañaga et al. [7] [8] increased significantly the austenite fraction. This was accompanied by 
the solidification of, what they termed, superfine lamellar interdendritic graphite, which was 
associated with high tensile strength of 300-350 MPa, without a significant increase in hardness, 
which remained in the range of 185-200HB. The superfine graphite is short (10-20µm) and 
stubby. Thermal analysis on standard cooling curve cups and keel blocks indicated an increase 
of the liquidus temperature with Ti, suggesting an austenite nucleation effect. The eutectic 
temperature decreased and overall the liquidus/eutectic temperature interval significantly 
increased. This was interpreted as increased time for austenite solidification, which explains the 
increase in the austenite fraction. Since increasing the amount of primary austenite increases the 
strength of cast iron, this is a matter of importance and is analysed in the present project 
[Moumeni; Tiedje; and Hattel, Paper II ] [9] and [Moumeni; Stefanescu; Tiedje; Larrañaga and 
Hattel, Paper III] [10]. 
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Titanium is well-known to be a deoxidizer and structure refiner in steel. For the case of cast 
iron, it has been argued that Ti addition refines the secondary arm spacing in both grey and 
ductile iron [11] [12] and increases the number of austenite dendrites by reducing the carbon 
equivalent [13].  It has also been observed that Ti addition favours formation of type-D graphite 
[14] [9] and increases the graphite type A-to-D transition temperature [15]. 
Part of the present work was undertaken in an attempt to clarify the role of Ti with and without 
S in promoting increased fraction of austenite and superfine graphite [9] [10]. The 
microstructure investigations also involved the use of the commercial software ThermoCalc for 
thermodynamical analyses. A detailed analysis of the graphite through optical and electronic 
microscopy is also provided, with particular attention given to the various inclusions that may 
serve as nuclei for the phases of interest.  

1.2. Graphite in cast iron 

The crystallographic structure of graphite has been studied by many scientists such as in Refs. 
[16] [17] [18] [19] [20]. It has been suggested that the growth of graphite is mainly determined 
by the composition of the liquid iron in which the graphite grows during solidification [21]. For 
nodular graphite the radial growth of the conical crystals is suggested by Double and Hellawell 
[22]. They also believe that spheroidal graphite is the preferred morphology in a clean melt, 
while flaky graphite is an impurity modified form. For the flaky graphite, the growth direction 

of the graphite lattice is observed to be mainly perpendicular to the graphite–basal planes [16]. 

The usual structure of graphite which is hexagonal was proposed by Hull [23] and confirmed by 
Bernal [24] and Hassel and Mark [25]. It is basically consisting of basal layers of carbon atoms 
bonded in a continuous hexagonal network and is composed of four atoms per unit cel. The 
layers are stacked ideally in an ABAB sequence but since the layers are relatively wide spaced 
and bonds are weak they may easily slide or tilt relative to one another.  
Later, an X-ray diffraction study of graphite showed inexplicable peaks not belonging to 
hexagonal graphite [26]. It was concluded that graphite may also have a rhombohedral structure 
when stacking faults occur in the crystal. On the basis of a rhombohedral unit cell including six 
atoms the stacking sequence becomes ABCABC [27]. A schematic picture of these two models 
are shown in Fig. 1. In the 1960es, dislocation structure and twins in graphite were observed. In 
a graphite crystal, with the layers of planes arranged in the hexagonal stacking sequence, the 
associated stacking fault will be a region of the crystal arranged in the rhombohedral stacking 
sequence. 
 

           
Hexagonal                                   b)   Rhombohedral   

Fig. 1. Two models for graphite crystal structure (made by the software “JEMS” student edition, CIME‐EPFL 
Lausanne) 
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Several different reactions normally contribute to graphite formation in cast irons. The bulk of 
the graphite formed by eutectic solidification forms the inner part of the larger particles, while 
precipitation from austenite and the stable eutectoid reaction deposit the outer layers. Therefore, 
the remaining iron/Graphite interface is believed to be formed in the solid state [28]. Thus in 
order to understand the evolution of the interface, all three phases must be considered. 
Ferrite/graphite interfaces in commercial cast irons have been shown to prefer two particular 
orientation relationships [28]. Both relationships are found in both grey and ductile irons. 
Adsorption of impurities at the graphite/liquid interface plays an important role in the formation 
of lamellar graphite. S and oxygen (O) are found by Scanning Auger Microscope (SAM) 
adsorbed at the graphite/melt interface during solidification of grey iron [29]. The adsorbed 
elements influence the growth sites on the basal planes and thereby stabilize the interface, 
resulting in the formation of flakes. In the present work it is shown that this phenomenon in the 
case of interdendritic superfine graphite is different.  
The experimental part of the present work is directed towards analysis of how microstructures 
in the microalloyed cast iron develop during solidification [Moumeni; Tiedje; Grumsen; 
Danielsen; Horsewell and Hattel, Paper IV] [30]. Highly advanced 3D methods using a range of 
new techniques provided by the new electron microscopes at the CEN DTU are used to prepare 
samples for electron microscopy study. These new techniques allowed us to characterize the 
materials from nano-scale to mm-scale. The primary new electron microscopy tool of relevance 
to this project was a dual beam instrument in which one column provides a focused ion beam 
(FIB). The FIB is used to sputter down through the microstructure layer-by-layer, while the 
second column comprises a scanning electron microscope (SEM) which can collect sequential 
images of the successive layers. This technique enabled us to prepare samples of graphite and 
the surrounding iron matrix in the form of thin foils for TEM investigation. Consequently, the 
mechanism of formation of new forms of graphite (superfine interdendritic) was carried out and 
confronted with the regular flaky graphite in grey iron. Moreover, the selected area electron 
diffraction (SAED) pattern technique has been applied to investigate the orientation relationship 
between the graphite and the iron matrix in detail at the interfaces of graphite and iron. The 
microstructure investigations also involved the use of JEMS commercial software package for a 
detailed crystallographic analysis.  
The final goal of this project is to build more reliable wind turbine cast parts (hub, etc.) with 
better physical and mechanical characteristics and perhaps lower cost.   

1.3. Structure of the thesis 

The thesis includes 5 chapters which are followed by 4 appended articles.  
 
In Chapter 1, the motivation of the work and a brief background has been given with an 
overview of the microalloyed cast iron. 
 
Chapter 2, consists of the theory and the literature survey about solidification of cast iron 
including the nucleation and the growth of primary and eutectic phases. Different types of 
graphite are explained in this chapter too.  
 



6 
 

 
Chapter 3, is focused on applying numerical process modelling and experimental analysis tools 
for the prediction and characterization of microstructure of cast iron. In particular, the 
solidification of hypereutectic ductile iron has been studied. 
The model developed by Pedersen has been used to simulate the microstructure evolution 
during solidification in the technical computer language MATLAB. The model has mainly been 
used for test and validation of the experiments. Moreover, a parameter study for the nucleation 
model has been carried out and the experimental results have been compared with the numerical 
outputs.  
 
Chapter 4, presents a comprehensive study on the effect of S and Ti on the microstructure of 
grey iron. In this chapter the experimental results including metallographic investigations of this 
group of irons by both optical and electron microscopy methods are presented and discussed. A 
comprehensive TEM study on the superfine interdendritic graphite which is the result of the 
addition of Ti in the grey cast iron has been conducted and explained.  
 
In Chapter 5, a summary of the appended articles is given. 
 
Finally in Chapter 6, the conclusions of this PhD thesis and suggestions for the future work are 
presented.  
 
The articles are enclosed in the Appendixes.  
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Chapter 2 

Theory 

2.1. Heat transfer 

 
 
The casting process is in essence characterized by three main steps: Pouring the melt into the 
mould cavity, solidification of the melt and subsequent solid state cooling. The distinction 
between these steps is however not totally sharp for the casting as a whole since one step can 
actually start before the preceding one has been totally finalized (solid state cooling might start 
in some areas of the casting while others are still solidifying). 
So, if we want to describe and model casting mathematically we in general need proper models 
for the physical phenomena taking place such as fluid flow, heat transfer, microstructural 
evolution, formation of transient and residual stresses and so forth. 
 
However, since the purpose of the present thesis is the solidification of cast iron we will 
naturally limit ourselves to focus on the heat transfer and microstructural evolution which takes 
place during solidification. In essence heat flows from the casting to the mould and to the 
surrounding environment. At some point during solidification, the casting at the macro-scale 
constitutes of at least two phases which are solid and liquid and depending on the alloy 
composition, cooling conditions, mould material, etc. the solidification morphology can take 
various forms, e.g. columnar, equi-axed, and planar. 
 
Any solidification model is in essence based on the energy equation with release of latent heat 
which in turn comes from energy conservation or the first law of thermodynamics within a 
volume element, i.e.: 
 
Net heat flux into the 
element + 

heat generated inside element 
per unite time (e.g. latent 
heat) 

= 
change in heat content per 
time 

 
The heat flux is given by Fourier’s law of heat conduction which states that there is an energy 
transfer due to conduction from the high temperature region to the low temperature region 

ݍ
ܣ
ൌ ݇

߲ܶ
ݔ߲

 
 

              Eq. 1 
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where q/A [W] is the heat flux normal to the surface of the area A; A [m2] is area of the surface, 
through which the heat flows; k [W/mK]; is the thermal conductivity; T [K] is the temperature 
and x [m] is the descriptive space parameter perpendicular to the surface. The minus sign is due 
to the opposite direction of the heat flow and the temperature gradient. Fourier’s law is the 
defining equation for the thermal conductivity (k) which may be measured for each material. 
 
Now, combining with energy conservation we obtain the heat conduction equation in 1-D on the 
following form: 
 

௣ܿߩ
߲ܶ
ݐ߲

ൌ
߲
ݔ߲

൬݇
߲ܶ
ݔ߲
൰ ൅ ሶܳ  

                Eq. 2 
 

 

Where ρ is density [W/m3], cp is specific heat capacity [J/(kgK)] and ሶܳ  is the volumetric heat 
generation per time [W/m3] . In the 3-D case eq.(2) takes the form: 
 

௣ܿߩ
߲ܶ
ݐ߲

ൌ
߲
ݔ߲

൬݇
߲ܶ
ݔ߲
൰ ൅

߲
ݕ߲

൬݇
߲ܶ
ݕ߲
൰ ൅

߲
ݖ߲
൬݇
߲ܶ
ݖ߲
൰ ൅ ሶܳ  

 

 
Eq. 3 

 

The derivation of these equations is explained in details in many text books on heat conduction, 
see for example the references [31] [32]. 
 
The heat conduction equation which is a partial differential equation (PDE) needs proper 
information on geometry, boundary conditions and material data. So when doing actual 
solidification simulation the related empirical information such as the material data and the 
geometry should be defined first. More specifically, the required thermophysical material data 
such as densities, specific heat capacities, and thermal conductivities for all of the materials in 
the casting system and the latent heat of fusion for the cast alloy should be defined with the 
highest possible accuracy. In addition, the process parameters such as the initial conditions for 
the unknown quantities need to be specified. For instance, initial temperatures and the interface 
heat transfer coefficient between the various materials in the casting system are required. 
After defining all this, the mesh generation can be performed and the governing differential 
equation - in essence eq.(3) in the case of solidification simulation can be solved together with 
the relevant expressions for microstructural evolution. This will all be addressed in more detail 
in chapter three where the developed model for the solidification of cast iron is presented. 
 

2.2. Cast iron solidification 

Cast iron is one of the most complex alloys used in industry. The complexity is mainly because 
it can solidify with formation of either a stable (austenite-graphite) or a metastable (austenite-
Fe3C) eutectic. Moreover, various graphite shapes exist depending on chemical composition and 
cooling rate. 
The microstructure formation in cast iron during the liquid-solid transformation includes two 
stages. The first stage is solidification of proeutectic or off-eutectic phases which are austenite 
(γ) dendrites in hypoeutectic irons, and graphite crystallization from the liquid in hypereutectic 
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Fig. 14. Effect of alloy elements on the microstructure of cast iron [53] 

 
Moreover, it is generally accepted that in the FG iron, the chemical composition must be chosen 
in a way to meet the following requirements:  

a) The desired graphite shape and distribution 
b) The required matrix  
c) A carbide free structure 

An important part of the present work has been carried out to study the effects of titanium on 
grey cast iron. Hence, the following section provides some theories about the results of addition 
of this element in particular. 
 
2.3.1.    Titanium in cast iron 

Ti is present in minor amounts in almost all cast irons, entering through the melt stock most 
typically in the pig iron or recycled material containing certain commonly used structural steels. 
When Ti is added to ductile iron, the shape of graphite is changed to become less spherical. As 
the Ti content increases, the nodules gradually break up and become “worm like”, vermicular 
and compacted. In fact, the balanced usage of Mg and Ti is a preferred method of producing CG 
cast iron [55].  
In FG iron, Ti is routinely added to stabilize nitrogen due to its ability to suppress or eliminate 
porosity caused by an excess of nitrogen dissolved in the liquid in the melting and holding 
furnaces [56]. Basutkar et al. [57] argued that titanium additions nucleate dendrites favouring 
the formation of small equiaxed dendrites. Wallace and co-workers [11] [12] found that titanium 
additions refined the secondary arm spacing in both grey and ductile iron. Ruff and Wallace 
[13] concluded that the number of austenite dendrites can be increased by reducing the carbon 
equivalent, adding elements, such as Ti and B, which increase the undercooling by reducing the 
nucleation potential for graphite or restricting the growth of the eutectic cell, or by adding 
materials that serve as substrates for austenite nucleation (nitrides, carbonitrides and carbides of 
various elements such as Ti and V). Okada [14] suggested that Ti additions resulting in the 
formation of TiC, produce low carbon regions at the solid/liquid interface, favouring formation 
of type-D graphite. Using SEM/EDS analysis, Zeng et al. [58] identified the presence of 
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different Ti compounds in hypoeutectic grey irons containing about 0.08%S and up to 0.02%Ti. 
The compounds included TiN (35at%N), (MnTi)S and TiC. Nakae and Fujimoto [15] identified 
a graphite type A-to-D transition temperature, TA/D, using thermal analysis. Titanium additions 
increase the TA/D temperature and thus favour type-D graphite formation at smaller 
undercooling. Yet, no explanation for this behaviour has been provided. 
The three reaction products of titanium observed most frequently in cast iron are titanium 
nitride (TiN), titanium carbide (TiC) and titanium sulfide (TiS2) [56]. Titanium sulfide 
apparently is not very effective as a nucleation site for graphite. This results in a reduction in 
graphite nuclei and increased undercooling which may produce more primary austenitic 
dendrites by increasing the time between the initial formation of the dendrites and the nucleation 
of the eutectic. Sommerfeld and Ton [59]  who used thermodynamic modelling  suggested the 
following sequence of phase formation for a hypoeutectic iron (3.4%C, 1.5%Si, 0.7%Mn, 
0.05%S, 0.04%Ti)): austenite at 1195C, followed by Ti4C2S2 at 1185C, followed by graphite at 
1148C, followed by MnS at 1146C. Note that their calculation is based on the assumption of 
thermodynamical equilibrium which ignores kinetic effects. In addition to the sulfides, square-
shaped TiN inclusions were also observed.  
Wilford and Wilson [60] studied the influence of up to 0.4% Ti in grey iron. They stated that 
first, Ti will react with N producing TiN or Ti(CN) that affects the solidification of primary 
austenite. The excess Ti will then react with S. Formation of TiS decreases the available S for 
MnS formation and increases undercooling which is responsible for type-D graphite formation. 
Under the rapid solidification conditions produced when Ti increased the amount of 
undercooling, large quantities of graphite type D and/or type E will form. This fine, highly 
branched structure of the graphite provides shorter diffusion distances for C and results in the 
austenite being able to decompose to ferrite in the areas immediately adjacent to the graphite. 
Thus, the iron matrix is more ferritic due to the shorter diffusion distance for C with the type D 
graphite, compared to type A. In this case the strength and hardness will be lowered. Okada [14] 

suggested that Ti additions result in the formation of TiC, produce low carbon regions at the 
solid/liquid interface, favouring the formation of type-D graphite. Nakae and Fujimoto [15] 

defined a graphite type A-to-D transition temperature, TA/D, using thermal analysis. Titanium 
additions increase the TA/D temperature and thus favour type-D graphite formation at smaller 
undercooling. Yet, no explanation for this behaviour has been provided.  
Ruff and Wallace showed that [13] titanium refines the secondary dendrite arm spacing in irons 
of higher CE (by enhancing austenite nucleation) but increases secondary dendrite arm spacing 
with lower CE where the dendrites grow to a considerable extent before the eutectic forms.  
In summary, Titanium refines graphite, promotes formation of undercooled, type D graphite, 
reduces state of nucleation [61], refines secondary dendrite arm spacing in grey iron [11], 
segregates out of solidifying eutectic cells [62] and nucleates austenitic dendrites [57]. 

2.4. Effect of cooling rate on the microstructure of cast iron 

The cooling rate can also remarkably affect the as-cast structure and mechanical properties of 
cast iron. The cooling rate of a casting is primarily a result of the casting module. As a section 
size increases, the cooling rate becomes smaller and vice versa. Increasing the cooling rate will 
first refine both graphite size and matrix structure. Consequently, this will cause a higher 
strength and hardness. Another effect of increased cooling rate will be increasing the chill 
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tendency. In this case, the hardness might increase, but the ductility decreases. Therefore, the 
composition must be chosen in such a way that the required graphitization potency for a given 
cooling rate can be obtained. 
One suggestion for quantification of the effect of cooling rate and resulting undercooling on the 
nucleation during solidification was Oldfield’s model [33]. The modified Oldfield’s continuous 
model which is more specific for nucleation of nodular graphite is discussed in more detail in 
Chapter 3. 
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Chapter 3 

Heat transfer and solidification of 
ductile iron 

As earlier discussed in chapter two a model has been developed as part of the present work in 
solidification of cast iron. The aim of such model is generally to predict the thermal behaviour 
during solidification, the evolution of microstructures and the subsequent metallurgical 
characteristics and associated mechanical properties of the final product.  
In essence there are two theoretical prediction methods namely analytical methods and 
numerical methods. The first result in closed-form solutions and hence give the possibility of 
performing many parameter variations in a very short time however they are often based on 
rather limiting assumptions regarding the complexity of the geometry and the physics which can 
be taken into account. For the second group of methods it is more or less the other way around. 
Numerical methods open up for taking more complex phenomena into account however they 
also inherently result in calculation times which make parameter variations much more time 
consuming as compared to analytical models. So, very often a compromise must be established 
between modelling complexity and the need for a fast answer. 
During the last couple of decades numerical models have really shown their strength over 
analytical methods when it comes to obtaining accurate results in simulation of heat transfer 
during solidification. They have also made it possible to simulate microstructure evolution 
during the process. Since the gradual process of evolution of microstructures during 
solidification is closely coupled with its thermal history, numerical models are very useful to 
investigate relations between process conditions and microstructure. 
For this purpose, in the present work a 1-dimensional numerical model has been implemented 
and the results (i.e. cooling curve, cooling rate, nodule count and size distribution and fraction 
of solid phases) have shown good agreement with corresponding experimental studies 
[Moumeni, Tutum, Tiedje and Hattel, Paper I] [63].  
More specifically, heterogeneous nucleation of nodular graphite in ductile iron during eutectic 
solidification has been investigated. The experimental part of this work deals with casting of 
ductile iron samples with two different inoculants in four different thicknesses. Chemical 
analysis, metallographic investigation and thermal analysis of the specimens have been carried 
out. 
Finally, inoculation parameters have been studied and discussed and the numerical model has 
been used as a simple tool for inverse analysis to obtain these parameters based on the 
experiments [Moumeni, Tutum, Tiedje and Hattel, Paper I]. 
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yx
Cw /  is the C content of the phase x at the x/y interface in local equilibrium with graphite; 

l    is the density of liquid. 
 

And the diffusion reaction is given by [65]: 
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l
l l C
C

r

w
D

r
  
 


  

 
  Eq. 11 

 
Where: 

l
CD  is the diffusion coefficient of Carbon in liquid iron; 

g

l
C

r

w
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


is the carbon gradient in liquid at the interface. 

It is assumed that diffusion of the carbon is a quasi-stationary process, so: 
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           Eq. 12 

 

where Cw  is the carbon content of the bulk liquid far from interface. Since the flux in both 

cases is the same, by equalling the equations Eq. 10 and  Eq. 11, the composition of the liquid at 
the melt/graphite interface can be calculated as [65]:  
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Eq. 13 

 
   
 
The simple mass balance and carbon balance in the melt, according to the lever rule, can be 

estimated as below to relate 
cw  and gf :  

 0. . . 1 .l t l g g gV V f f                                 Total mass balance 

 0 0. . . . 1 . .l t l g g g
c cV w V f w f                     Carbon mass balance 

where:  
0V   is the initial volume of the grain 
tV   is the volume of the grain at the time t 

 
It is assumed that the nodules are sufficiently far away from each other so that their 
concentration fields do not overlap. Finally, combining Eq. 9 and Eq. 10 the following 
expression Eq. 14) is obtained to calculate the growth of the graphite nodules [65]: 
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graphite nodules and their associated austenite shells for each group which are nucleated in the 
same time step will be calculated too. 
The liquid is assumed to be homogeneous from the view point of the overall mass balance. 
However, when the metal cools down, the concentration must increase in the liquid for local 
chemical equilibrium between γ and L in order to follow the austenite liquidus. This will result 
in the precipitation of some extra austenite ( eutectic or off eutectic) in one of the following 
ways: 

a) To build up carbon in the liquid in front of fast growing eutectic γ shells; 
b) To build up carbon around growing off-eutectic dendrites which diffuse in the bulk 

liquid. 
One should notice that during the eutectic stage of the solidification, no extra off-eutectic 
graphite will precipitate on cooling or on reheating (in the case of recalescence). The reason is 
that 

a) During cooling, the C concentration follows the γ-L line, i.e. the concentration has to 
increase. Therefore, only precipitation of austenite is possible.  

b) During recalescence, the principal condition for the nucleation of graphite, which is 

( )g
Ld T

dt

  >0, is not met.  

 Since reheating of the metal during the eutectic stage of the solidification must result in a 
decrease in carbon content of the liquid, there is either precipitation of off-eutectic graphite 
(which is impossible), or dissolution of some pre-existing off-eutectic austenite dendrites, or the 
growth of the eutectic austenite shell must slow down. 
The rate of growth is based on a mass balance, first the overall mass balance and then C mass 
balance to be combined with the local mass balances at the interfaces g/γ and γ/L. These will 
result in appropriate equations that give the growth rate of the various phases during eutectic 
reaction. 
The overall mass balance during eutectic reaction is expressed as below [65]: 
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Eq. 15 
 

 
This equation includes both the eutectic sphere (the first two terms in the right hand side of the 
equation) and the off-eutectic phases (the third term in the right hand side).  
The carbon mass balance can be expressed as below [65]: 
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Eq. 16 
 

Where:  
l
Cw  is the carbon content in the liquid phase;  

Cw  is the carbon content in the eutectic austenite;  

After differentiating Eq. 16 with respect to time and combining it with chemical mass balances 
at the interfaces graphite/austenite and austenite/liquid, we are able to find the proper equations 
to calculate the growth rate of the solid phases.  
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In the model [65] the parameter “ ” has been introduced to make the calculations easier. This 
quantity equals the ratio of the actual mass of C in the off-eutectic volume over the mass of 
carbon in the same off-eutectic volume if it would be completely liquid and in equilibrium with 

the eutectic austenite. Therefore, if 1 , the off-eutectic volume would be completely liquid. 

And if  1Ck    , the off-eutectic volume is composed of both austenite dendrites and liquid. 

The quantity of   is expressed as bellow [65]: 
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If there is no off-eutectic austenite precipitated, a straight differentiation of the carbon mass 
balance will result in the equation below: 
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Where: 

gV  is the volume of graphite; 

eutV  is the volume of eutectic spheres. 
 

The growth of graphite nodule radius will be calculated by the following equation [65]:  
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CD   is the diffusion coefficient of Carbon in austenite 

   is the density of austenite 

Ck    is the partition coefficient of carbon between austenite and liquid 


Cm   is the slope of austenite liquidus 

 
The growth of the austenite shell will be found by the following [65]: 
 

   















r
ww

ww

ww

ww

rrr

r
D

dt

dr
g

C
g
C

l
C

l
C

g

g

l
C

l
C

g
C

l
C

i
g

ii

g
i

C
i 


















/

//

//

//

.1..
.

 
Eq. 17 
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If off-eutectic austenite is present in a particular casting cell,  r  is assumed to be zero; 

otherwise it should be taken into account. 
A comprehensive description of derivation of the equations is provided in the references [64] 
[65] [70]. 
 
3.1.3 The 1D explicit model of heat transfer 

The heat transfer model (section 2.1) together with the solidification model (sections 
3.1.1&3.1.2) have been used in a 1D grid using the Control Volume-based Finite Difference 
Method (Fig. 19). The heat transfer model is written according to the Ref [31]. The heat balance 
for a control volume can be written as:  
“The change of heat content per time equals sum of heat fluxes into the volume over 2 surfaces 
plus volumetric heat generation”, which can be expressed as Eq. 18. 
 

,i i gen iQ q Q    Eq. 18 

 

where iQ  is the total heat content of the control volume i, iq is the total heat flow into the 

control volume i and genQ  is the heat generated in the control volume i. The generated heat per 

control volume i per time is given by the expression: 

,
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Q H
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   Eq. 19 

 

Where iH is the latent heat for the control volume i and 
s

idV

dt
is the change of the fraction of 

solid for the control volume i per time step dt (or t ). 
 

Before calculating the temperature, it is useful to define the parameters Cap
iH and Con

iH .  

i

CapH is defined as the capacity function and it is expressed as [31]: 
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where ix  is the size of the cell i and t  is size of the time step. 

Con
iH is defined as the conductivity function [31]: 
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where   is the thermal conductivity and HTC is the heat transfer coefficient between the two 
materials.  
 
For the case of a 1D Cartesian control volume mentioned above, using the explicit method, the 
change of temperature in control volume i can be expressed as [31]:  
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calculated using the average of data from 5 images and has been converted from 2D to 3D 
applying the Schwartz-Saltykov method [71]. It can be seen that the nodule size distribution 
differs from a single normal distribution, but it can be composed by addition of more than one 
normal distribution. The width of the distribution, i.e. the difference in size between the smallest 
nodule and the largest is here called the “range” of the distribution. As expected, the nodule 
count, i.e. the total number of nodules per ݉݉ଷ in the thicker samples is lower, but the range of 
nodule size is wider and also the average size of the nodules is bigger. 
 

 
a) 10 mm section 

 
b) 6 mm section 

 
c) 4 mm section 

 
d) 2 mm section 

Fig. 24. Size distribution of nodules [Moumeni, Tutum, Tiedje and Hattel, Paper I] 
 
The measured cooling curves for the two different sections (4 and 10mm thick) are illustrated in 
Fig. 25.  
 

 
a) Casting 1 for plate 4 mm. 
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b) Casting 1(dashed line) and casting 2 (solid line),  for plate 10 mm. 
Fig. 25. Measured cooling curves (green) and cooling rates (red) [Moumeni, Tutum, Tiedje and Hattel, Paper I]. 

3.3. Effect of the nucleation parameters on the numerical results 

The model is now used to investigate how the nucleation parameters can be assessed. According 
to the nucleation law shown in Eq. 8, “An“ is the constant related to the amount of inoculant  and 
“n” is a constant characterizing the inoculation efficiency. The effect of these two parameters 
on the range of nodule size and the shape of the cooling curve is studied. 

It can be seen in Fig. 26 that for a given combination of An and gr0 , and for a casting with a 

thickness of 4mm, decreasing the value of n results in a wider range of nodule size distribution. 

 
Fig. 26. Effect of n on Size distribution of nodules (numerical result) [Moumeni, Tutum, Tiedje and Hattel, Paper I] 

 
In Fig. 27, the numerical results are compared with the experimental results. As shown, the 
closest result to the experimental results for the range of nodule size for the thickness of 4 mm, 
can be obtained by n=2. 
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Fig. 27. Comparison of experimental results (squares) with numerical results (triangles) from the model. 

 
In Fig. 28, the effect of n on the cooling curve is depicted. It can be seen that increasing n, 
which means increasing the efficiency of the inoculation, results in a higher eutectic temperature 
and a flatter shape of the cooling curve during eutectic transformation. 
Increasing the quantity of An also results in raising the eutectic temperature and the 
solidification time. However, it does not change the shape of the cooling curve. 
 

 
Fig. 28. Effect of n on the shape of cooling curve; numerical results [Moumeni, Tutum, Tiedje and Hattel, Paper I]. 
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Fig. 29. Effect of An on the shape of cooling curve; numerical results [Moumeni, Tutum, Tiedje and Hattel, Paper I] 

 

The effect of initial radius on graphite was investigated too. It was observed that by changing gr0

, only ௠ܶ௜௡ changes slightly. The related diagram is depicted in the Fig. 30. 

 

Fig. 30. Effect of 
gr0  on the shape of cooling curve; numerical results. 

 
In Fig. 31, the measured cooling curve for the specimen with the thickness of 10mm is 
compared with the numerical results in order to find the quantity of n to fit the cooling curve 
with the experimental results. It can be seen that the measured solidification time for the 
experiments is shorter than the results obtained from the model. The reason can be that the one 
dimensional assumption is not so well-describing for the thickness of 10mm. Since the 
thickness to the width is larger than acceptable for a one dimensional model. Therefore, the 
results for the specimen with the thickness of 10mm in the one dimensional model will not be 
discussed. 
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Fig. 31. Effect of n on the shape of cooling curve; experimental vs. numerical results 

 
In the following figures, the empirical and numerical cooling curves for the thickness of 4mm 

are illustrated. The effect of the parameter n for a given nA is shown in Fig. 32. The closest 

eutectic temperature to the empirical values is obtained for n equal to 1. But the shape of the 
cooling curve is matched better for the numerical results of n=2. 

In the next diagram (Fig. 33), the effect of nA  for a given value for n (n=1) is studied. The best 

value for the eutectic temperature is related to the numerical curve for 2.5 11nA e . 

 
Fig. 32. Effect of n on the shape of cooling curve; experimental vs. numerical results 
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Fig. 33. Effect of nA  on the shape of cooling curve; experimental vs. numerical results  

 

3.4. Summary  

The numerical model is used to analyse the effect of inoculation on graphite size and 
distribution and in general on coupled zone growth and growth of austenite and graphite. It is 
demonstrated how a 1-D numerical model for solidification of ductile cast iron in the form of a 
plate, taking into account the formation of off-eutectic austenite can be used to analyse 
nucleation and solidification. The experimental results have shown good agreement with the 
numerical results regarding the cooling curve and nodule count and size distribution.  
The sensitivity of the numerical results to the empirical nucleation parameters has been analysed 

and it is shown how these parameters such as nA  and n can affect the numerical results, e.g. 

cooling curve. Moreover, ௠ܶ௔௫, ௠ܶ௜௡ and recT strongly depend on the above mentioned 

parameters. The parameter nA is the constant related to the amount of inoculant, therefore, by 

increasing this parameter the eutectic reaction happens at higher temperature. The parameter n is 
the constant characterizing the inoculation efficiency; increasing this parameter results in a 
significant shift of the cooling curve.  
In Chapter 4 it is shown by experimental tools how the nucleation potential can affect the shape 
of the cooling curve. For grey iron, by decreasing the available amount of Mn and S in the melt 
for nucleation of the regular flaky graphite it will be explained how the fraction of this type of 
graphite decreases drastically and will be accompanied by a noticeable increase in the fraction 
of primary austenite. 
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Chapter 4 

A study on micro-alloyed cast iron  

In this investigation the effect of Ti and S on the microstructure of grey iron is studied 
[Moumeni; Tiedje and Hattel, Paper II] [Moumeni; Stefanescu; Tiedje; Larrañaga and Hattel, 
Paper III]. Optical and electron microscopy are used to examine the unetched, colour-etched and 
deep-etched samples. The inclusions are identified in an effort to explain the nucleation of the 
phases of interest. The superfine graphite which forms in this type of irons is short (10-20µm) 
and stubby. The microstructure of this kind of graphite flakes in titanium alloyed cast iron is 
studied using electron microscopy techniques [30]. An important part of this work has been to 
develop methods to prepare samples of cast iron for comprehensive transmission electron 
microscopy of graphite and the surrounding iron matrix. Dual beam microscopes are used for 
sample preparation. A TEM study has been carried out on graphite flakes in grey cast iron using 
selected area electron diffraction (SAED). Based on the SAED pattern analysis, crystallographic 
orientations are identified and compared. Subsequently, the orientation relationship between 
iron and graphite crystals at the interface is studied and discussed. 
Based on this information, growth models for the platelets in the fine graphite flakes in cast iron 
are suggested and discussed.  

4.1. Experimental set-up 

The first series of experiments were carried out to identify the inclusions in lamellar graphite 
cast iron in an effort to explain the nucleation of the phases of interest. Four samples of 
approximately the same carbon equivalent but different levels of sulphur and titanium were 
studied. Their chemical composition is shown in Table 4 (row 1-4). The samples were produced 
by Azterlan, Spain and part of the metallographic study was carried out at Ohio State 
University. 
The second series of experiments and a comprehensive electron microscopy study were 
performed at the Technical University of Denmark (DTU). Tensile test bars of grey cast iron of 
near eutectic alloys with different levels of Ti were made in green sand moulds. The effect of 
Titanium on the structure of graphite was investigated. A TEM study was performed in order to 
observe the effect of Ti on the structure of the graphite in details. The chemical composition of 
the specimens is shown in the Table 4 (row 5-8). 
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Table 4. Chemical composition (wt%) of the test samples [Moumeni; Tiedje and Hattel, Paper II] [Moumeni; 
Stefanescu; Tiedje; Larrañaga and Hattel, Paper III] 

Sample no. CE C Si Mn P S Ti 
401.1 4.07 3.44 2.07 0.54 0.036 0.120 0.018 
401.5 4.03 3.42 2.02 0.50 0.037 0.120 0.360 
621.1 4.12 3.51 2.01 0.55 0.015 0.018 0.060 
621.5 4.06 3.45 2.03 0.58 0.015 0.012 0.350 
GI-1 4.16 3.34 2.57 0.16 0.030 0.015 0.01 
GI-2 4.26 3.45 2.54 0.23 0.024 0.012 0.10 
GI-3 4.39 3.50 2.80 0.22 0.019 0.007 0.26 
GI-4 4.21 3.30 2.83 0.21 0.025 0.012 0.35 

 
 
4.1.1.    Casting procedure 

Regarding the first series of experiments, two grey iron melts, B401(high in sulphur) and B621 
(low in sulphur), were produced in a medium frequency induction furnace. The complete 
melting procedure is described in [7]. After melt down and superheating at 1500oC, a 50kg ladle 
was used to pour iron into two EN-1563 Type II keel blocks. An amount of 0.2% of the 
commercial inoculant was deposited on the bottom of each keel block mould before pouring. 
The remaining of the iron in the ladle was returned to the furnace. After adjustment of carbon, 
ferro-titanium (65%Ti) was added to the melt. The melt was superheated again and a second set 
of keel blocks was poured. 
A detailed metallographic investigation was performed on samples obtained from the keel 
blocks through both optical and electron microscopy. The images have been taken before and 
after etching. Some of the samples were colour-etched using the etchant: %25 (80g) NaOH, 6% 
(20g) KOH, 6% (20g), picric acid, and (200mL) 63% water. A 2%Nital was used for deep 
etching for the SEM analysis. 
For the second series of samples (GI-1 to 4), the iron was melted in an induction furnace in a 
batch of 150 kg. The composition was near eutectic and was adjusted by addition of pig iron, 
cast iron returns, industrial grade silicon and steel plates. After pouring the first ladle of 30kg, 
ferro-titanium was added to the melt in the furnace and to reach a Ti content of 0.11%. 
Afterwards, the second ladle was poured with the same procedure and again ferro-titanium was 
added to the rest of the melt increasing the weight percent of Ti to 0.26%. The same procedure 
was repeated for the remaining melt so that a Ti content of 0.35% was reached. The inoculant 
was each time added to the melt in the pouring ladle. The composition of inoculant is presented 
in Table 5. The pattern for these experiments is the same as in Fig. 21 (explained in section 3.2), 
consisting of a gating system and four tensile test samples which are different in dimensions. 
The thicknesses of tensile test specimens are 2, 4, 6 and 10mm. 
 

Table 5-chemical composition of inoculant (weight percent) [Moumeni; Tiedje and Hattel, Paper II]  
Si Al Fe 

52.89 0.609 Bal. 
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The high magnification colour micrograph of low Ti/S ratio low-S iron in Fig. 38 shows few 
inclusions, one TiC and one MnS. The Ti carbide is in the middle of the matrix, while the Mn 
sulphide is attached to a graphite flake. 
 

 
Fig. 38. Colour etched micrographs of the sample. 621.1 – 0.018% S, 0.06% Ti at 500X [Moumeni; Stefanescu; 

Tiedje; Larrañaga and Hattel, Paper III] 
 
Increasing the Ti/S ratio in the low S iron, raises manifold the number of inclusions. In Fig. 
39.a&b it is seen that the inclusions are pushed by the growing dendrites into the last regions to 
solidify. In Fig. 39.c the short and stubby superfine graphite with a typical length of 10 to 20µm 
can be seen. It was shown [8] that the fraction of primary austenite in the high-S iron 401.5 
increased from 0.17 to 0.27 as the Ti/S ratio increased (Ti increased from 0.018 to 0.36%). 
However, titanium carbides do not seem to act as nuclei for the austenite since they are 
positioned in the interdendritic regions. 
 

   
a)                                                b)                                                       c)  

 
Fig. 39. Colour etched micrographs of the sample. 621.5 – 0.012% S, 0.35% Ti [Moumeni; Stefanescu; Tiedje; 

Larrañaga and Hattel, Paper III] 
 
According to the ternary phase diagram of Fe-C-Ti presented in Fig. 40, for a 3.5%C iron, TiC 
can precipitate at temperatures considerably higher than the liquidus of cast iron. Thus, it is 
reasonable to assume that Ti carbides form in the liquid, before the beginning of the austenite 
solidification, and are pushed into the last regions to solidify by the austenite dendrites.  
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Fig. 40. Section through the Fe-Ti-C ternary phase diagram [72] 

 
On the second series of the experiments [9] metallographic investigation was performed as 
below. As explained earlier, the only difference in the chemical composition of the samples 
from the second series is in the Ti content (see Table 4, row 5-8). The images were taken with 
and without chemical etching. As shown in Fig. 41.a, in the sample GI.1 the graphite is mostly 
type B, C and A. Sample GI.2 shows finer graphite flakes in the form of type A and B (Fig. 
41.b). In some areas, fine graphite is formed as type D. However, in the high-Ti samples 
graphite is mostly formed as fine type D (Fig. 41.c&d). Fig. 41.b & c show that the graphite 
becomes finer with increasing addition of Ti. 

 

 
a) Sample GI.1, 0.01%Ti 

 
b) Sample GI.2, 0.1%Ti 
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c) Sample GI.3, 0.26%Ti 

 
d) Sample GI.4, 0.35%Ti   

Fig. 41- As-cast microstructure of samples GI.1-4, 100X [Moumeni; Tiedje and Hattel, Paper II] 
 
As expected, TiC inclusions were identified in the medium and high-Ti samples (Fig. 42). 
Sample GI.3 and 4 have very similar microstructure. The only difference which could be 
addressed is the scale of the graphite and higher number of TiC(N) inclusions in the sample 
GI.4. 
 

 Sample GI.2, 0.1%Ti    Sample GI.3, 0.26%Ti   Sample GI.4, 0.35%Ti   
Fig. 42- As-cast microstructure of samples GI. 2, GI.3 and GI.4; 500X [Moumeni; Tiedje and Hattel, Paper II] 

 
Additionally, the metallography samples were colour etched by the same procedure as the first 
series of the experiments. As shown in Fig. 43, addition of titanium promotes significant 
segregation in the microstructure. Besides, dendrites are more pronounced in the Ti containing 
samples. 
 

Sample GI.1, 0.01%Ti 
 

Sample GI.2, 0.1%Ti 
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Fig. 54. Deep etched micrographs of sample 621.1 – 0.018%S, 0.06%Ti [Moumeni; Stefanescu; Tiedje; Larrañaga 

and Hattel, Paper III] 
 
A dramatic change in the microstructure occurs when the Ti/S ratio is raised to 29.2 for sample 
621.5 with low-S high-Ti (0.012% S, 0.35%Ti). A large number of cubic TiC particles are 
observed (Fig. 55). This is consistent with previous research [7] where it was found that the 
number of Ti compounds increases significantly as the Ti content in the iron increases. They are 
the dominant inclusions at this composition. As also documented earlier, the TiC particles are 
pushed by the austenite dendrites to the last regions to solidify (Fig. 55 a). There is no evidence 
showing that TiC could act as nuclei for the primary austenite. However, isolated instances 
where the TiC is in contact with the graphite have been found (Fig. 55c). We do not feel that 
this is enough proof to demonstrate a graphite nucleation effect by the TiC. A few MnS 
inclusions were also observed. The graphite flakes are thick and short with a high branching 
tendency (Fig. 55c, d). 
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Fig. 56. SEM micrographs of superfine graphite from deep etched sample 621.5 [Moumeni; Stefanescu; Tiedje; 

Larrañaga and Hattel, Paper III] 
 
The specimens from the second series of experiments were also deep etched using a 2% Nital 
etchant, so that the graphite and inclusions were brought forward for closer analysis. The SEM 
images are presented in Fig. 57 & Fig. 58. The trend of changes in the shape and size of 
graphite, which was shown and explained in Fig. 41 and Fig. 42, could be seen in these images. 
 

a)Sample GI2, 0.1%Ti   b) Sample GI3, 0.26%Ti   c) Sample GI4, 0.35%Ti   
Fig. 57- As-cast, SEM images 
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Calc simulations done by the author and also confirmed beforehand by Sommerfeld and Tonn 
[59] and Stets and Macher [76].  
This depletion results in the depression of the eutectic temperature. Thus, for high S iron, Ti 
additions will increase the amount of austenite through enhanced austenite nucleation and an 
increased liquidus-eutectic interval, which allows more time for austenite growth before the 
eutectic reaction. A higher amount of dendritic austenite will favour a type-A to type-D 
transition for graphite, as the graphite is constrained to grow between the dendrite arms. This is 
in agreement with the previous statements by Larrañaga et. al [8]. 
 
ii) High-Ti low-S iron 
For the low S irons, no clear nucleation site for austenite can be observed. The higher amount of 
austenite produced by Ti additions can still be attributed to the higher liquidus-eutectic interval 
(see Table 7). The increased undercooling prior to eutectic solidification and poor graphite 
inoculation can also be the reasons for the increase in primary austenite. Another probable 
explanation for the higher liquidus temperature is increased nucleation. Yet, we were not able to 
identify nucleation sites for the austenite in iron 621.5. The higher Tmin in the absence of Ti, and 
the highest Tmin for the highest purity iron from the series (621.1) can be understood through 
equilibrium thermodynamics. Indeed, low S and Ti content decrease the stable eutectic 
temperature by similar amounts and thus, purer irons should have higher eutectic equilibrium 
temperature.  
 
Table 7. Thermal analysis data and fraction of austenite [Moumeni; Stefanescu; Tiedje; Larrañaga and Hattel, Paper 

III] 

Sample no. TL Tmin TL - Tmin 
Austenite 
fraction 

401.1 1182 1147 35 0.17 
401.5 1192 1145 47 0.27 
621.1 1187 1148 39 0.27 
621.5 1198 1144 54 0.38 

 
The fact that Ti addition produced larger eutectic cells supports the theory that Ti introduces 
lower nucleation rate of the graphite in between the dendrite arms of a larger fraction of 
austenite; although, the main driver for formation of finer graphite in high-Ti graphite remains 
the change in the nucleation potential. The Thermocalc simulation carried out by author as well 
as in [76] confirms the formation of inclusions containing C, S and Ti (Ti4C2S2) at the 
temperatures above solidification till 1152°C (see Fig. 70). As mentioned earlier, this has been 
confirmed by other authors too [59] [76]. Below this temperature, according to the Thermocalc 
simulation, Ti4C2S2 breaks down into TiC and MnS.  
Respecting the fact that calculations of Thermo-Calc are only in thermodynamical equilibrium, 
the phases and their formation temperatures under non equilibrium solidification conditions can 
be different. For that reason using other software such as MICRESS are suggested for future 
work. 
Please note that nitrogen and oxygen have not been measured in the melt; therefore, they are not 
taken into consideration in the solidification.  
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kinetics of growth at the solid liquid interface. This matter needs to be investigated more in 
detail in the future work. 
The results of the TEM study also indicated that some areas of the graphite structure in the high-
Ti iron consist of several elongated grains which had similar but slightly different orientation 
relationships. Some of the grains had a rhombohedral crystal structure and the orientation of 
these grains was similar to the hexagonal grains, the (001) planes being almost parallel. There 
was no specific orientation relationship between the iron and the investigated graphite grains, 
but since the orientation relationship between the graphite grains themselves varied slightly, 
perhaps some of them do correlate with the iron crystal structure. 
The graphite structure in the high-Ti samples was found to be expanded considerably in the “c” 
direction, that is the (001) interplanar spacings were higher than expected. The value of 
expansion varies in different areas; the expansion measured in the diffraction pattern images 
was up to 8%. The expansion was not found in the low-Ti specimens. The high number of 
defects in the graphite crystal structure such as stacking faults might cause the expansion in the 
high-Ti samples. The graphite in the low-Ti iron (flaky graphite) in the investigated areas 
matches with the hexagonal unit cell and shows no expansion. 
A high tendency of branching of graphite in the presence of titanium was observed in the 
specimens. This has also been reported in [77], although, there is no explanation for this 
phenomenon yet.  
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Chapter 5 

Summary of the articles  

5.1. Paper I 

E.Moumeni, C.C.Tutum, N.S.Tiedje and J.H.Hattel, “Analysis of nucleation modelling in 
ductile cast iron”, ICASP 3 -The 3rd  International Conference on Advances in Solidification 
Processes  June 2011, published in IOP Conf. Ser.: Mater. Sci. Eng. 27, 2012  
 
In this paper heterogeneous nucleation of nodular graphite at inclusions in ductile iron during 
eutectic solidification has been investigated. The experimental part of this work deals with 
casting of ductile iron samples with two different inoculants in four different thicknesses. 
Chemical analysis, metallographic investigation and thermal analysis of the specimens have 
been carried out. 
A numerical model has been implemented and the results (i.e. cooling curve, cooling rate, 
nodule count and solid fraction) have shown a good agreement with experimental studies; 
following this, inoculation parameters such as n and An in the model have been studied and 
discussed. 

5.2. Paper II 

E. Moumeni, N.S.Tiedje and J.H.Hattel, “Effect of titanium on the near eutectic grey iron”,  
12th International Foundrymen Conference, Sustainable Development in Foundry Materials and 
Technologies, May 2012, Opatija, Croatia, published in the journal International Foundry 
Research, Issue 2/2013. 
 
The effect of Titanium on the microstructure of grey iron is investigated experimentally in this 
paper. Plates of grey cast iron of near eutectic alloys containing 0.01, 0.1, 0.26 and 0.35% Ti, 
have been made in green sand moulds. The results of chemical analysis, metallographic 
investigation and thermal analysis of the specimens are shown and discussed.  
An SEM and TEM study have been performed in order to observe the effect of Ti on the 
microstructure of the alloys in smaller scale. Furthermore, the microstructure and thermal 
analysis are related and discussed. 
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5.3. Paper III 

E. Moumeni, D.M. Stefanescu, N.S. Tiedje, P. Larrañaga, J.H. Hattel, “Investigation on the 
Effect of Sulfur and Titanium on the Microstructure of Lamellar Graphite Iron”, Accepted for 
the Metallurgical and Materials Transactions A (In press), 2012 Dec. 
 
In this paper the inclusions in lamellar graphite cast iron are identified in an effort to explain the 
nucleation of the phases of interest. Four samples of approximately the same carbon equivalent 
but different levels of sulphur and titanium have been studied. The Ti/S ratios are of 0.15 to 
29.2 and the Mn/S ratios of 4.2 to 48.3. Optical and electron microscopy have been used to 
examine the unetched, colour-etched and deep-etched samples. 
The effect of titanium in refining the graphite and increasing the austenite fraction is explained 
through the widening of the liquidus-eutectic temperature interval (more time for austenite 
growth) and the decrease in the growth rate of the graphite because of Ti absorption on the 
graphite. 

5.4. Paper IV 

E. Moumeni, N.S. Tiedje, F.B. Grumsen, H.K. Danielsen, A. Horsewell, J.H. Hattel, “A TEM Study on 
the Ti-alloyed grey iron”, Submitted to the journal of Materials Science and Technology, April 
2013 
  
In this investigation the microstructure of the graphite flakes in titanium alloyed cast iron is 
studied using electron microscopy techniques. The method of TEM sample preparation using 
dual beam microscopes is explained. A TEM study has been carried out on graphite flakes in 
grey cast iron using selected area electron diffraction based on which crystallographic 
orientations are identified and compared. The orientation relationship between iron and graphite 
crystals at the interface is studied and discussed. 
Based on this information, growth models for the platelets in the fine graphite flakes in cast iron 
are discussed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



68 
 

Chapter 5 

Conclusions and future work 

It is demonstrated how a numerical model for solidification of ductile cast iron can be used to 
analyse nucleation and solidification. The numerical results have shown a good agreement with 
the experiments. The effects of nucleation parameters on the numerical results are investigated 
and discussed. As a future work, it would be interesting to optimize the nucleation parameters to 
get the best fit to the experimental results. 
 
The effects of addition of titanium and sulphur on the grey iron have been studied. It was 
confirmed that when sufficient sulphur is present in the iron, nucleation occurs on Mn sulphides 
that have a core of complex Al, Ca, Mg oxide. Both type-A and type-D graphite were observed 
to grow on the Mn sulphide. An increased titanium level of 0.35% produced superfine 
interdendritic graphite (~10μm) at low as well as at high S contents. The shape of the graphite 
was also dramatically altered.  
While TiC additions increased the liquidus temperature, TiC did not appear to be a nucleation 
site for the primary austenite as it was found mostly at the periphery of the secondary arms of 
the austenite, in the last region to solidify. The effect of titanium in refining the graphite and 
increasing the austenite fraction can be explained through the widening of the liquidus-eutectic 
temperature interval (more time for austenite growth) and the decrease in the growth rate of the 
graphite. 
In the presence of high Ti and S, (MnTi)S star-like and rib-like inclusions were found in the 
middle of the secondary arms of the austenite dendrites. It is reasonable to assume that they are 
acting as nuclei for the austenite. 
The fact that Ti addition produced larger eutectic cells supports the theory that Ti is not 
producing finer graphite because of a change in the nucleation potential, but because of lower 
growth rate of the graphite in between the dendrite arms of a larger fraction of austenite. 
Ti also caused increased segregation in the microstructure of the analysed irons and larger 
eutectic cells.  
 
The microstructure of the graphite flakes in titanium alloyed cast iron was studied using 
electron microscopy techniques. FIB lift-out of TEM lamellae has been used successfully to 
make electron transparent thin foils. The FIB lift-out technique has allowed for selection of 
specimen areas containing regions of flaky graphite and the surrounding cast iron matrix. The 
thin foils are uniform in thickness and show no apparent damage resulting from the FIB.  
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A TEM study has been carried out on graphite flakes in grey cast iron using selected area 
electron diffraction. The graphite particles in Ti-containing cast iron were investigated and 
found to consist of many small grains which have slightly different orientation relationships. 
Most of these grains have a hexagonal crystal structure, but a few of them have a rhombohedral 
crystal structure. There seems to be a good correlation between the orientation of two crystal 
structures, the (001) planes being almost parallel. There did not seem to be any specific 
orientation relationship between the investigated graphite grains and the iron matrix.   
While trying to understand the severe segregation due to the presence of titanium and its 
relation with the crystallization of graphite, it could be considered that the growth mode would 
be determined either due to the segregation and therefore, concentration of some elements such 
as Ti or S at the growth front, or due to the changes in the kinetics of growth at the solid liquid 
interface. In future work, this matter could be investigated more in detail. 
In the deep etched samples investigated by SEM and in the lamellae studied by TEM, no 
impurities, inclusions or heterogeneous nucleation sites have been seen in the area of fine 
graphite so far. In future work, a higher number of TEM specimens could be studied to 
investigate the nucleation of this type of graphite.  
The platelets of graphite are predicted to have a weak and brittle attachment to each other. The 
cracks or voids may occur during the growth of the graphite or during TEM sample preparation. 
Considering the fact that graphite is a very brittle material, one could say that the fractures or 
voids in the crystals would happen during solidification as stresses caused by cooling and 
growth of the solid phase imposes forces on the graphite to deform and break. Twinning seems 
to be one of the main mechanisms of the anisotropic growth of this type of graphite which has 
taken place at high undercooling. 
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Abstract. Heterogeneous nucleation of nodular graphite at inclusions in ductile iron during
eutectic solidification has been investigated. The experimental part of this work deals with
casting of ductile iron samples with two different inoculants in four different thicknesses.
Chemical analysis, metallographic investigation and thermal analysis of the specimens have
been carried out. A numerical model has been implemented and the results (i.e. cooling curve,
cooling rate, nodule count and solid fraction) have shown a good agreement with experimental
studies; following this, inoculation parameters in the model have been studied and discussed.

1. Introduction
During the last 50 years ductile iron has been one of the most important casting alloys in
industry. This is due to its high strength and ductility, good castability and competitive price.
Prediction of thermal behaviour during solidification and metallurgical characteristics of the final
product, and therefore, mechanical properties have always been of interest; therefore, several
analytical and numerical models have been developed and applied to achieve these purposes.

Numerical models have shown more realistic results as compared to analytical models
in simulation of heat transfer during solidification. They have also made it possible to
simulate microstructure evolution during the process. Since formation of microstructures during
solidification is closely coupled with its thermal history, numerical models are very useful to
investigate relations between process conditions and microstructure [1].

It is widely accepted that eutectic solidification of hypereutectic ductile iron begins with
the nucleation and growth of graphite in the liquid, and is followed by early encapsulation
of the graphite spheroids in austenite shells (envelopes). Once the austenite shell is formed,
further growth of graphite can occur only by diffusion of carbon from liquid through the
austenite. However, the interaction between nucleation of graphite and austenite dendrites
plays a significant role in eutectic solidification [2],[3]. Even for hypereutectic irons, the graphite
spheroids do not grow in independent austenite envelopes, but rather are associated with
austenite dendrites [4]. Lesoult et al. [2] developed a model which includes the description
of the nucleation and growth of the pro-eutectic graphite in hypereutectic iron and for the first
time they also considered the formation of pro-eutectic austenite during solidification of both
hypo- and hyper-eutectic spherodised graphite (SG) iron [5].

Later, K.M Pedersen et al. [3] enhanced that model by applying a numerical calculation
of heat flow in casting and mould, taking into account the heat transfer coefficient between
the casting and the mould which can be very important for thin-walled castings. The model
implemented in the present work is based on the same model.
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In this work solidification of eutectic transformation of hypereutectic ductile iron produced by
using two different inoculants (table 2), is investigated. The samples were cast in four different
thicknesses (table 1), and their metallurgical properties are investigated and discussed. The
model is used to investigate how nucleation parameters can be assessed.

2. Numerical model
Applying the first law of thermodynamics and Fourier’s law, the 1-D heat conduction equation
governing all domains (casting and mould) is given in equation(1):

ρcp
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
+ qgen (1)

Where ρ is density, cp is specific heat capacity, T is the temperature, t is time and k is thermal
conductivity, and qgen [w/mm3] is the generated heat which can be expressed by fs (solid
fraction), ∆Hf (latent heat) and density as shown below:

qgen = ∆Hf ρ
∂fs
∂t

(2)

The above mentioned model is used to calculate heat flow throughout the casting and the mould.
The predicted cooling conditions result from the coupling of macro heat transfer from casting
to environment with the microstructure evolution during solidification, which is dictated by
transformation kinetics [6].

As mentioned before, the model for solidification of ductile iron proposed by Lesoult et al.
[2] is applied in this work, though the basic idea of the nucleation model of graphite nodules is
taken from Oldfield [7]. Nucleation of graphite nodules is the first part of every time step. The
number of nucleated graphite nodules in time step i, dN, is governed by the undercooling with

respect to the graphite liquidus (∆T g
L). Therefore, when

d(∆T g
L)

dt > 0 the nucleation rate can be
calculated as shown below:

dN = An(∆T g
L)

n−1
f l
d(∆T g

L)

dt
V offdt (3)

when fl is liquid fraction and V off is the volume of off-eutectic phases. Lesoult et al. presented
a physical model of eutectic solidification of SG cast iron which quantitatively accounts for the
formation of non-eutectic austenite during solidification (see figure 1).

Figure 1. Eutectic stage of solid-
ification of ductile iron. Austenite
dendrite is present as part of the
off-eutectic volume [2].

As far as the model is concerned emphasis has been put on the analysis of the carbon
redistribution between the graphite, the eutectic austenite, the liquid, and the non-eutectic
phases; thus a careful expression of the carbon mass balance within the volume has been
obtained.

A comprehensive description of the model including nucleation and growth of primary
graphite and eutectic transformation taking into account the formation of off-eutectic austenite
can be found in the references: [3],[2].
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3. Experiments
A hypereutectic cast iron melt was prepared in a batch of 150 kg. The specimens were cast in
sand moulds as tensile test specimens (2), their thicknesses are shown in table 1. Magnesium
treatment and inoculation with two inoculants was made; the compositions of inoculants are
indicated in table 2. The temperature was measured in the middle of each plate using 0.5 mm
diameter stainless steel sheathed K-type thermocouples. Some key points on the cooling curve,
showing different stages of solidification, are shown in 3 [3]. The recalescence ∆Trec is defined
as the difference between Tmax and Tmin. Generally, the lower the ∆Trec is, the more efficient
the innoculation is.

Figure 2. As cast specimen.
Figure 3. Definition of temperatures on cooling
curves (from 4.3 mm plate) [3].

Table 1. Thickness of casting.

section 1 section 2 section 3 section 4

Thickness(mm) 10 2 4 6

Table 2. Composition of inoculants (%wt)

Si Al Ca La Fe

inoculant 1 52.8 0.6 - - Bal.
inoculant 2 50 - 2 2 Bal.

Chemical composition of casting parts and their casting temperature are shown in table 3.
casting 1 was inoculated by inoculant 1 and casting 2 was inoculated by inoculant 2.

4. Results and Discussion
4.1. Microstructure and cooling curves
Metallographic investigations of all of the samples were done with optical microscope.
Nodularity, nodule count and size distribution as well as iron matrix microstructure were
examined. No noticeable difference was observed between two castings with the same thicknesses.
Examples of microstructure images and cooling curves for the two different plate thicknesses are
shown in figures 4 to 7.

The 3rd International Conference on Advances in Solidification Processes IOP Publishing
IOP Conf. Series: Materials Science and Engineering 27 (2011) 012062 doi:10.1088/1757-899X/27/1/012062

3



Table 3. Chemical Composition of castings

%C %Si %Mn %Mg casting temperature

Casting 1 3.86 2.64 0.22 0.043 1400
Casting 2 3.76 2.60 0.23 0.048 1400

Figure 4. Graphite nodules in as-cast
specimen of casting 1, 10 mm thickness,
image taken from center of section.

Figure 5. Pearlitic-ferritic structure of
the same sample as figure 4, revealed after
etching with Nital 2%.

Figure 6. Measured cooling curve (green)
and cooling rate (red), casting 1 for plate 4
mm.

Figure 7. Measured cooling curves (green)
and cooling rates (red), casting 1 (dashed
line) and casting 2 (solid line), for plate 10
mm.

4.2. Nodule Count and Size Distribution
The size distribution of graphite nodules per unit volume is measured and is shown in figure 8
and figure 9 for the samples from the 4 and 6 mm plates. Small particles which had a size
between 0 to 5 µm are considered as inclusions, and are not counted. The mean diameter of
graphite nodules and nodule count has been converted from 2D to 3D by the applying Schwartz-
Saltykov method [8]. We can see the nodule distribution differ from a single normal distribution,
but it can be composed by addition of more than one normal distribution. The width of the
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distribution, i.e.: the difference in size between the smallest nodule and the largest is in this
paper called the ”range” of distribution. As expected, the nodule count, i.e. the total number
for nodules per mm3 in thicker samples is lower, but the range of nodule size is wider and also
the average size of nodules are bigger.

Figure 8. Size distribution of nodules, 4
mm plate, casting 1.

Figure 9. Size distribution of nodules, 6
mm plate, casting 1.

4.3. Nucleation Parameters in the Model
According to the nucleation law shown in Equation (3), An is the constant related to the amount
of inoculant and n is a constant characteristic of the inoculation efficiency [2]. The effect of these
two parameters on the range of nodule size and the shape of the cooling curve has been studied.
As seen in figure 10, for a given An and initial radius of graphite (rg0), decreasing n leads to a
wider range of nodule size distribution (figure 10). In figure 11, the effect of n on cooling curve is
depicted. It can be seen that increasing n which means increasing the efficiency of inoculation,
leads to a higher eutectic temperature and a flatter shape of the cooling curve during eutectic
transformation.

Figure 10. Effect of n on Size distribution
of nodules.

Figure 11. Effect of n on cooling curve.

In addition, the effect of An and initial radius of graphite (rg0) on ∆Trec has been investigated
too. Increasing An means that there are more nuclei available in the melt. This has two effects on
solidification: recalescence begins at a higher temperature, and the reheating during recalescence,
∆Trec is increased (figure 12 and figure 14). Increasing rg0 allows more latent heat to be released
immediately after nucleation so that the recalescence, ∆Trec, is reduced, as shown in figure 13.
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Figure 12. Effect of An on ∆Trec.
Figure 13. Effect of rg0 on ∆Trec.

Due to the space limitation, only the results related to the 4mm plate are discussed in this
paper. But in the rest of results it is observed that some of the parameters in the model such
as An and rg0 should be different for different thicknesses to give the more realistic results, i.e.
cooling curve, nodule size, nodule count.

Figure 14. Effect of An on cooling curve.

5. Conclusion
It is demonstrated how a numerical model for solidification of ductile cast iron can be used to
analyse nucleation and solidification. Based on results from the experiments used in this inves-
tigation it is realistic to assume that rg0 is equal to 0.5 µm for thin plates. And it is observed
that some of the parameters in the model such as An and rg0 should be different for different
thicknesses to give the more realistic results, i.e. cooling curve, nodule size, nodule count. The
population of nuclei in the experimental alloys is high and the nucleation efficiency factor, n, is
larger than one.
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fine interdendritic graphite will be produced. They demon-
strated that tensile strength of grey iron of average 4 % CE 
can be increased to 300-350 MPa, without a significant in-
crease in hardness, which remains in the range of  
185-200 HB. It is worth mentioning that the influence of 
primary austenite dendrites on the mechanical properties 

1 Introduction 
The solidification and graphitization of cast iron has been 
attracting many scientists over the last decades, but still the 
mechanism is not well understood. The graphite microstruc-
ture stays the most important factor influencing the required 
properties of cast iron [1, 2, 3]. Therefore, its exact charac-
terization is the only reliable indicator for mechanical prop-
erties proposed by foundries and required by customers [4].

Graphite morphology, size and distribution can be more 
or less efficiently controlled in the modern foundry indus-
try using certain alloying elements and inoculation, as well 
as varying processing technology such as cooling rates and 
overheating of the melt [5]. Among all, addition of alloy-
ing elements is of the main interest in this work, whereas 
small amounts of alloy elements in the cast iron can im-
prove the depth of chill, hardness and strength. Moreover, 
alloy elements are responsible for the amount and shape of 
graphite precipitated in the casting, as well as for the con-
stitution of the iron matrix and inclusions precipitated dur-
ing solidification and subsequent cooling to room temper-
ature [6].

For instance, titanium is usually found in the grey iron 
as a trace element or added as an alloying element to in-
crease strength or improve wear resistance [7]. A microstruc-
ture study showed that titanium is a relatively strong ele-
ment in controlling solidification structure by increasing 
undercooling and thus promoting type D graphite. The ef-
fectiveness of titanium addition depends on the base iron 
carbon equivalent (CE). Lerner [8] showed that changes 
made by Ti addition results in tensile strength improvement, 
but the effect depends on base iron CE. In 4.44 % CE iron, 
tensile strength was maximized at about 0.075 % Ti, while 
the maximum tensile strength in 4.5 % CE iron took place 
at about 0.085 % Ti. Larrañaga et. al. [9] showed that addi-
tion of appropriate sulfur and titanium contents will in-
crease the primary austenite-to-eutectic ratio, while super-

Effect of titanium on the near eutectic 
grey iron
The effect of Titanium on the microstructure of grey iron was investigated experimentally  
in this work. Tensile test bars of grey cast iron of near eutectic alloys containing  
0.01, 0.1, 0.26 and 0.35 % Ti, respectively were made in green sand moulds. 
Chemical analysis, metallographic investigation and thermal analysis of the specimens were 
carried out thoroughly. 
An SEM and TEM study were performed in order to observe the effect of Ti on the microstruc-
ture of the alloys in smaller scale. Furthermore, the microstructure and thermal analysis are  
related and discussed. 
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Figure 1: The pattern 

Table 1: Chemical composition of inoculant 
 

Chemical elements, wt %

	 Si	 Al	 Fe

	52.89	 0.609	 bal.
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weight percent of titanium to 0.26 %. The same procedure 
was repeated for the remaining melt so that a Ti content of 
0.35 % was reached. The inoculant was each time added to 
the melt in the pouring ladle. The composition of inoculant 
is presented in Table 1. The chemical composition of the 
melt of each ladle is presented in Table 2. The carbon equiv-
alent is calculated according to:

CE = % C + 0.317 ·  % Si + 0.33 · % P	 (1)

The temperature was measured in the induction furnace 
and the melt was superheated to 1450 °C before pouring. 
Two “Quick Cup” samples were cast from each melt for ther-
mal analysis. The samples for metallographic analysis were 
taken from the 10 mm thickness specimen. The SEM im-

of gray iron is similar to the rein-
forced steel bars effect in concrete 
or fibers in composites acting as a 
support frame. This means that eu-
tectic cells will be reinforced by 
dendrites [10].

The work presented in this pa-
per represents part of a comprehen-
sive effort to develop a fundamen-
tal understanding of the function 
of Ti in grey iron.

2  Experimental
This experimental work was carried out in the foundry of 
department of Mechanical Engineering at Technical Uni-
versity of Denmark. The green sand moulds were made on 
a Disamatic 2110 moulding machine. As it is shown in  
Figure 1, the pattern is consisting of gating system and four 
tensile test samples which are different in dimensions. The 
thicknesses of tensile test specimens are 2, 4, 6 and 10 mm.

 The iron was melted in an induction furnace in a batch 
of 150 kg. The composition was near eutectic and was ad-
justed by addition of pig iron, cast iron returns, industrial 
grade silicon and steel plates. After pouring the first ladle of 
30 kg, ferro-titanium was added to the melt in the furnace 
and to reach a Ti content of 0.11 %. Afterwards, the second 
ladle was poured with the same procedure and again ferro-
titanium was added to the rest of the melt increasing the 

Table 2: Chemical composition analysis of the melt 
 
	 Chemical elements, wt %

Sample	 C	 Si	 Mn	 S	 P	 Cu	 Ti	 Al	 CE

DI-1	 3.34	 2.57	 0.16	 0.015	 0.030	 0.04	 0.01	 0.006	 4.16

DI-2	 3.45	 2.54	 0.23	 0.012	 0.024	 0.06	 0.10	 0.011	 4.26

DI-3	 3.50	 2.80	 0.22	 0.007	 0.019	 0.06	 0.26	 0.017	 4.39

DI-4	 3.30	 2.83	 0.21	 0.012	 0.025	 0.06	 0.35	 0.015	 4.21

Figure 2: As-cast, 100 x: a) sample no. 1, 0.01 % Ti; b) sample no. 2, 0.1 % Ti; c) sample no. 3, 0.26 % Ti;  
d) sample no. 4, 0.35 % Ti

a

c

b

d



12

Casting alloys, behaviour

International Foundry Research 65 (2013) No. 1

TiC inclusions are mostly observed at the intercellular ar-
eas (Figure 5a), at the borders of the secondary arms of den-
drites (Figure 5b).

3.2  Electron microscopy investigation

The SEM analysis was carried out using Quanta 200 3D, dual-
beam scanning electron microscope. This microscope has res-
olution of 50 nm at 30 kV (SE) and the accelerating voltage of 
500 V to 30 kV with the capability of using a focused ion beam 
for removing material by milling. The in situ lift-out technique 
was applied to obtain TEM lamellae. A short description of 
this technique is explained in the subsection 3.2.1.

TEM studies (conventional and high resolution) were do-
ne using a Tecnai T20 G2 transmission electron microscope 
equipped to carry out chemical analysis. It has point reso-
lution of 0.24 nm at 200 kV and its electron source is therm-
ionic – LaB6.

3.2.1  In situ lift-out technique
To apply in situ lift-out technique a secondary electron im-
aging within the chamber of a focused ion beam-SEM sys-
tem is needed. Navigation to a region of interest can be per-
formed using secondary electron (SE) imaging. After choos-
ing the region of interest, ion beam induced platinum will 
be deposited on its surface and around this area will be milled 
by FIB milling.

The lift-out sequence starts with maneuvering the lift-
out needle into position, to the side of a pre-milled section, 
which is only attached to the bulk sample at one point. Then 
the needle will be welded to the section and a cut will be 

ages were also acquired from metallography samples. The 
8 mm thickness specimens were used for tensile test. Al-
though after surface machining their thickness were low-
ered to 5.5 mm.

3  Results and discussion

3.1  Metallography

The metallographic investigation initiated by using an op-
tical microscope. First, the images were taken after prepara-
tion without any chemical etching. As shown in Figure 2a, 
in the sample no. 1 the graphite is mostly type B, C and A. 
Sample no. 2 shows finer graphite flakes in the form of type 
A and B (Figure 2b). In some areas, fine graphite is formed 
as type D. However, in the high-Ti samples graphite is most-
ly formed as fine type D (Figure 2c and d). Figure 2b and c 
shows that the graphite becomes finer with increasing ad-
dition of Ti.

As expected, TiC inclusions were identified in the medi-
um and high-Ti samples (Figure 3). Sample no. 3 and 4 have 
very similar microstructure. The only difference which could 
be addressed is the scale of the graphite and higher number 
of TiC inclusions in the sample no. 4.

Later, the metallography samples were color etched  
at 70 ºC using the etchant 80 g NaOH, 20 g Picric acid in 
200 ml water. As it can be seen in Figure 4, addition of tita-
nium promotes significant segregation in the microstruc-
ture. Besides, dendrites are more pronounced in the Ti con-
taining samples.

Figure 3: As-cast, 500 x:  
a) sample no. 2, 0.1 % Ti; 
b) sample no. 3, 0.26 % Ti;  
c) sample no. 4, 0.35 % Ti

a

c

b
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sions were brought forward for closer analysis. The SEM im-
ages are presented in Figure 7 and Figure 8. The trend of 
changes in the shape and size of graphite could be seen in 
these images.

3.2.3  TEM results
A thin film sample was prepared from the fine graphite of 
the 0.35 % Ti sample for TEM study applying the in situ lift-

made to detach the section from the bulk sample. At this 
point, the lamella is ready to be picked up in order to trans-
fer to a TEM grid [11, 12]. The lift-out sequences has been 
shown in Figure 6.

3.2.2  SEM results
The specimens were deep etched using a 2 % HNO3 solution 
in alcohol for 10-15 minutes, so that the graphite and inclu-

Figure 4: Color etched, 50 x: a) sample no. 1, 0.01 % Ti; b) sample no. 2, 0.1 % Ti; c) sample no. 3, 0.26 % Ti; 
d) sample no. 4, 0.35 % Ti

a

c

b

d

Figure 5: Color etched: a) sample no. 3, 200 x; b) sample no. 3, 500 x

a b
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out technique. This sample was initially milled out of the 
polished sample by ion beam milling in a Helios EBS3 FIB-
SEM. It was subsequently thinned for use in the TEM. 

Figure 9 shows the layered structure and fine grains of 
graphite. Twin boundaries outline the very fine grains indi-
cating that twinning plays an important role in the growth 
of the graphite lamellae.

3.3  Thermal analysis

Cooling curves were obtained from melt 1, 2 and 3. As it is 
depicted in Figure 10, it can be seen that addition of titani-
um changes the shape of the cooling curve. Even though the 
carbon equivalent for melt 2 and 3 (as calculated using Equa-
tion (1)) is marginally higher than that of melt 1, the frac-
tion of primary austenite increases with addition of Ti to the 
cast iron. This shows that Equation (1) needs to be modified 
to correctly calculate the carbon equivalent when cast irons 
are alloyed with Ti. The cooling curves in Figure 10 shows 
that eutectic temperatures for grey irons are not changed due 
to the addition of Ti. 

4  Conclusions
Addition of 0.1 % Ti or more (up to 0.36 % was tested in this 
work), promotes fine type D graphite and a significant seg-
regation in the microstructure.

Titanium carbide inclusions are mostly located at the in-
tercellular areas.

Fraction of primary austenite increases at the presence 
of Ti.

TEM studies shows that addition of Ti to grey cast iron 
makes the graphite very fine grained with twin boundaries 
between grains. Twin boundaries could be seen between the 
graphite crystals.

Cooling curves confirm the raise of formation of prima-
ry austenite dendrites with increasing the weight percent 
of titanium in the composition of iron.

This article is based on a paper presented at the 12th Internation-
al Foundrymen Conference – Sustainable Development in Found-
ry Materials and Technologies – on Mai 24 to 25, 2012, in Opati-
ja, Croatia

Figure 6: SE images of: a) a cantilever shape specimen milled into the substrate with a needle Pt welded to it;  
b) a wedge shaped piece of material attached to a needle raised above the sample; c) the wedge being attached to TEM grid 
and d) a wedge shape specimen attached to a grid bar into which a TEM specimen has been milled [13].

a

c d

b
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Figure 8: Sample no. 3, 0.26 % Ti, SEM images: a) super fine graphite; b) super fine graphite and TiC inclusions

a b

Figure 7: : As-cast, SEM images: 
a) sample no. 2, 0.1 % Ti;  
b) sample no. 3, 0.26 % Ti;  
c) sample no. 4, 0.35 % Ti

a

c

b
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ABSTRACT 
The goal of this work was to identify the inclusions in lamellar graphite cast iron in an effort to 
explain the nucleation of the phases of interest. Four samples of approximately the same carbon 
equivalent but different levels of sulfur and titanium were studied. The Ti/S ratios were of 0.15 to 
29.2, and the Mn/S ratios of 4.2 to 48.3. Light and electron microscopy were used to examine the 
unetched, color-etched and deep-etched samples. 

It was confirmed that in irons with high sulfur content (0.12 wt%) nucleation of type-A and type-D 
graphite occurs on Mn sulfides that have a core of complex Al, Ca, Mg oxide. An increased 
titanium level of 0.35% produced superfine interdendritic graphite (~10μm) at low (0.012 wt%) as 
well as at high S contents. Ti also caused increased segregation in the microstructure of the 
analyzed irons and larger eutectic grains (cells).  

TiC did not appear to be a nucleation site for the primary austenite as it was found mostly at the 
periphery of the secondary arms of the austenite, in the last region to solidify. The effect of titanium 
in refining the graphite and increasing the austenite fraction can be explained through the widening 
of the liquidus-eutectic temperature interval (more time for austenite growth) and the decrease in 
the growth rate of the graphite because of Ti absorption on the graphite. The fact that Ti addition 
produced larger eutectic cells supports the theory that Ti is not producing finer graphite because of 
a change in the nucleation potential, but because of lower growth rate of the graphite in between 
the dendrite arms of a larger fraction of austenite. 

In the presence of high Ti and S, (MnTi)S star-like and rib-like inclusions precipitate and act as 
nuclei for the austenite. 

INTRODUCTION 
The main solidification parameters affecting the mechanical properties of hypoeutectic gray 
(lamellar graphite) irons include the fraction of primary austenite and the shape, size and 
distribution of graphite. In foundry practice they are controlled through the chemical composition 
(carbon equivalent and alloying elements) and inoculation. Recently, using appropriate titanium 
additions in a low sulfur 4% carbon equivalent gray iron Larrañaga et al.1 increased significantly 
the austenite fraction. This was accompanied by the solidification of, what they termed, superfine 
lamellar interdendritic graphite, which was associated with high tensile strength of 300-350 MPa, 
without a significant increase in hardness, which remained in the range of 185-200HB.2 The 
superfine graphite is short (10-20µm) and stubby. Thermal analysis on standard cooling curve 
cups and keel blocks indicated an increase of the liquidus temperature with titanium, suggesting an 
austenite nucleation effect. The eutectic temperature decreased. Overall the liquidus/eutectic 
temperature interval significantly increased. This was interpreted as increased time for austenite 
solidification, which explains the increase in the austenite fraction. While the various inclusions 
were not positively identified, it was state that Ti compounds that were found mostly in the matrix 
did not appear to act as graphite nuclei. Manganese sulfides were found mostly in the proximity of 
the graphite, which qualifies them for possible graphite nuclei. 
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It is well known that a number of pure metals such as Li, Ca, Ba3, Sr, and Na4 can be effective in 
promoting graphite nucleation in cast iron. All these metals are strong oxide and sulfide formers. 
Their use as pure metals for inoculation purposes is impractical. Attempting to explain the 
efficiency of metals such as Ca, Ba, Sr, Na in the inoculation of lamellar graphite iron, Lux 5 
suggested that these, and all elements from groups I, II and III from the periodic table, when 
introduced in molten iron, form salt-like carbides that develop epitaxial planes with the graphite, 
and thus constitute nuclei for graphite. 

Later, Weis 6 assumed that nucleation of lamellar graphite occurs on SiO2 oxides formed by 
heterogeneous catalysis of CaO, Al2O3, and oxides of other alkaline metals. At about the same 
time the role of MnS in graphite nucleation was implied through experiments based on thermal 
analysis of cast iron.7 A MnS ratio of 12.3 was found to produce the lowest eutectic undercooling. 
Note that this is way in excess of the stoichiometric ratio Mn/S = 1.7. Eventually, a consensus was 
reached that graphite flakes nucleate on MnS or complex (MnX)S compounds which have low 
crystallographic misfit with graphite.8,9,10 Typically, an optimized amount of sulfur in the presence of 
manganese and other elements such as Fe, Si, Al, Zr, Ti, Ca and Sr will promote the nucleation of 
graphite.11,12 

Sommerfeld and Ton13 found that the manganese sulfides contained additional elements such as 
Al, or Mg when small amounts of Mg were added to the melt. The Al compound was identified as 
Al2O3, while the Mg was thought to be part of the sulfide,(MnMg)S. The (MnMg)S particles had the 
same shape, color and distribution as the MnS particles. The most efficient type-A graphite 
nucleation was obtained at a Mn/S ratio of 6.7, but the authors mentioned that the most important 
factor is the Mn- and S- contents and not their ratio. Thermo-Calc simulations suggested that 
additions of Al to the melt causes the early (1580oC) formation of a SiO2·Al2O3 phase, which can 
serve as nucleant for the MnS sulfides. For a hypoeutectic iron (3.4%C, 1.5%Si, 0.7%Mn, 0.05%S, 
0.04%Ti) the Thermo-Calc calculation suggested the following sequence of phase formation: 
austenite at 1195oC, followed by Ti4C2S2 at 1185oC, followed by graphite at 1148oC, followed by 
MnS at 1146oC. Note that this calculation is based on the assumption of thermodynamical 
equilibrium that ignores kinetic effects. In addition to the sulfides, square-shaped TiN were also 
observed. 

Riposan et al.14 documented that the additional elements found in the MnS inclusions are usually 
combined in complex oxides that serve as nuclei for the MnS. The chemistry of the complex oxides 
and sulfides is based on a large number of factors including the chemistry of the inoculant, of the 
pre-conditioner, the iron charge and the alloying elements. They proposed that graphite nucleation 
starts with the precipitation of complex oxides of Al, Si, Zr, Mg, Ti, followed by growth of complex 
(Mn,X)S sulfides, which constitute the nuclei for flake graphite. 

A similar theory of double-layered (cored) nucleation was proposed earlier for spheroidal graphite 
(SG). Using the results of SEM analysis, Jacobs et al. 15 contended that SG nucleates on duplex 
sulfide-oxide inclusions (1 µm dia.); the core is made of Ca-Mg or Ca-Mg-Sr sulfides, while the 
outer shell is made of complex Mg-Al-Si-Ti oxides. This idea was further developed by Skaland 
and Grong 10. They argued that SG nuclei are sulfides (MgS, CaS) covered by Mg silicates (e.g., 
MgO·SiO2) or oxides that have low potency (large disregistry). After inoculation with FeSi that 
contains another metal (Me) such as Al, Ca, Sr or Ba, hexagonal silicates (MeO·SiO2 or 
MeO·Al2O3·2SiO2) form at the surface of the oxides, with coherent/semi-coherent low energy 
interfaces between substrate and graphite. 

Titanium is well-known to be a deoxidizer and structure refiner in steel. For the case of cast iron, 
Basutkar et al.16 argued that titanium additions nucleate dendrites favoring the formation of small 
equiaxed dendrites. Wallace and co-workers17,18 found that titanium additions refined the 
secondary arm spacing in both gray and ductile iron. Ruff and Wallace19 concluded that the 
number of austenite dendrites can be increased by reducing the carbon equivalent, adding 
elements, such as Ti and B, which increase the undercooling by reducing the nucleation potential 
for graphite or restricting the growth of the eutectic grain, or by adding materials that serve as 
substrates for austenite nucleation (nitrides, carbonitrides and carbides of various elements such 
as Ti and V). Okada20 suggested that Ti additions resulting in the formation of TiC, produce low 
carbon regions at the solid/liquid interface, favoring formation of type-D graphite. Using SEM/EDS 
analysis, Zeng et al.21 identified the presence of different Ti compounds in hypoeutectic gray irons 
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containing about 0.08%S and up to 0.02%Ti. The compounds included TiN (35at%N), (MnTi)S and 
TiC. Nakae and Fujimoto22 identified a graphite type A-to-D transition temperature, TA/D, using 
thermal analysis. Titanium additions increase the TA/D temperature and thus favor type-D graphite 
formation at smaller undercooling. Yet, no explanation for this behavior was provided. 

Wilford and Wilson23 studied the influence of up to 0.4% Ti in gray iron. They stated that first, Ti will 
react with N producing TiN or Ti(CN) that affects the solidification of primary austenite. The excess 
Ti will then react with S. Formation of TiS decreases the available S for MnS formation and 
increases undercooling which is responsible for type-D graphite formation. 

Lux5 argued that element of group IV of the periodic table, including Ti and V, form metallic 
carbides but do not have a nucleation effect, as they do not increase the number of eutectic cells. 
Sun and Loper24 also reasoned that, while the atomic structure of TiC is such as to act as nucleus 
for graphite, the degree of mismatch between the lattices would minimize the nucleation 
effectiveness of Ti nitrides and carbonitrides. The effect of Ti on graphite shape may not be related 
to graphite nucleation, but to graphite growth. It is well known that sulfur and oxygen significantly 
affect graphite shape. According to Park and Verhoven,25 Scanning Auger Microscopy of fractured 
graphite surfaces reveals monolayers of S segregated at the iron/graphite interface during 
solidification. Because of this, S is expected to increase the undercooling required at a given 
growth rate for both type-A and type-D graphite. Increasing the S level at low Mn contents will 
result in increased undercooling and finer graphite. It is possible that the effect of Ti is similar to 
that of S. 

This work was undertaken in an attempt to clarify the role of titanium and sulfur in promoting 
increased fraction of austenite and superfine graphite. A detailed analysis of the graphite through 
light and electronic microscopy is provided, with particular attention given to the various inclusions 
that may serve as nuclei for the phases of interest. 

EXPERIMENTAL PROCEDURE 
Two gray iron melts, B401(high in sulfur) and B621 (low in sulfur), were produced in a medium 
frequency induction furnace. The complete melting procedure is described in ref. 2. After melt 
down and superheating at 1500oC, a 50kg ladle was used to pour iron into two EN-1563 Type II 
keel blocks (25mm). An amount of 0.2% of a commercial inoculant (chemical analysis: 68.1%Si, 
0.89%Al, 1.65%Ca, 0.45%Bi, 0.38%Ba and 0.37% lanthanides.) was deposited on the bottom of 
each keel block mold before pouring. The remaining of the iron in the ladle was returned to the 
furnace. After adjustment of carbon, ferro-titanium (65%Ti) was added to the melt. The melt was 
superheated again and a second set of keel blocks was poured.  

A detailed metallographic investigation was performed on samples obtained from the keel blocks 
through both light and electron microscopy. The images have been taken before and after etching. 
Some of the samples were color-etched using the etchant: %25 (80g) NaOH, 6% (20g) KOH, 6% 
(20g), picric acid, and (200mL) 63% water. A 2%Nital was used for deep etching for the SEM 
analysis. 

The scanning electron microscopy investigation has been carried out using an XL-30 low-vacuum 
and environmental scanning microscopy (ESEM), equipped with Energy Dispersive X-ray Analyzer 
(EDAX). The unetched samples were studied to identify the chemistry of the inclusions and to try to 
establish a connection between the inclusions and graphite morphology. 

RESULTS 
The chemical composition of the test samples is given in Table 1. The following equation is used to 
calculate the weight percent of the carbon equivalent26: 

CE = %C + 0.31·%Si – 0.027·%Mn 

It can be seen that the compositions of the studied irons are slightly hypoeutectic. The only 
important difference between the compositions of these irons is the amount of S and Ti. Note that 
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the Ti/S ratio increases from 0.15 to 29.2, and the Mn/S ratio from 4.2 to 48.3.Two of the irons, 
401.5 and 621.1 have similar Ti/S ratio, but iron 401.5 has six times more Ti and S than iron 621.1. 
Another set of two irons, 401.1 and 401.5, have similar Mn/S ratios, but iron 401.5 has 6 times 
more Ti than iron 401.1. 

Table 1. Chemical composition (wt%) of the test samples 

Sample no. CE C Si Mn P S Ti N Ti/S Mn/S
401.1 4.07 3.44 2.07 0.54 0.036 0.120 0.018 0.0037 0.15 4.5 
401.5 4.03 3.42 2.02 0.50 0.037 0.120 0.360 0.0033 3 4.2 
621.1 4.12 3.51 2.01 0.55 0.015 0.018 0.060 0.0071 3.33 30.6 
621.5 4.06 3.45 2.03 0.58 0.015 0.012 0.350 0.0057 29.2 48.3 

 

Light microscopy investigation 

The effect of S and Ti on the morphology and size of the graphite is shown in Fig. 1. It is seen that 
the low-Ti irons exhibit in all cases mostly coarse type-A graphite (Fig.1a, c). Increasing the Ti/S 
ratio produces finer graphite at the same S level (compare Fig. 1a and b, or Fig.1c and d). 
However, a clear difference is seen between the samples having low- or high-S. At the same Ti/S 
ratio, the sample with high S and Ti (401.5) exhibits finer graphite. Indeed, some type-A graphite 
persist in the microstructure of sample 621.5. 

A higher magnification of the high-S iron 401 reveals a large number of inclusions (Fig.2). These 
inclusions will be identified later through SEM analysis. Titanium addition refines the graphite and 
also changes the morphology of the inclusions. Indeed, as seen in Fig. 2b, some very large star-
like inclusions are noticed in the middle of the secondary arms of the austenite dendrites. These 
star-like inclusions are not present in the microstructure of the low-S high-Ti irons, as evident from 
Fig. 3. In the low-S high-Ti iron (Ti/S=29.2) the inclusions are mostly located at the borders of 
secondary dendrite arms.  

The dramatic effect of high Ti/S ratio on the microstructure is clearly illustrated in Fig. 4 for the 
case of the high-S irons. Larger eutectic grains and less oriented dendrites are noticed.  

The high magnification colored micrograph of low Ti/S ratio low S iron in Fig. 5 shows few 
inclusions, one TiC and one MnS. The Ti carbide is in the middle of the matrix, while the Mn sulfide 
is attached to a graphite flake. 

 

Increasing the Ti/S ratio in the low S iron, raises manifold the number of inclusions. In Fig. 6 it is 
seen that the inclusions are pushed by the growing dendrites in the last regions to solidify. In an 
earlier report1 it was shown that the fraction of primary austenite in the high-S iron 401.5 increased 
from 0.17 to 0.27 as the Ti/S ratio increased (Ti increased from 0.018 to 0.36%). However, titanium 
carbides do not seem to act as nuclei for the austenite since they are positioned in the 
interdendritic regions. 

The picture on Fig. 6c presents a detail of the superfine graphite. It is short and stubby with a 
typical length of 10 to 20µm. 

According to the ternary phase diagram of Fe-C-Ti presented in Fig. 7, for a 3.5%C iron, TiC can 
precipitate at temperatures considerably higher than the liquidus of cast iron. Thus, it is reasonable 
to assume that Ti carbides forms in the liquid, before the beginning of the austenite solidification, 
and are pushed in the last regions to solidify by the austenite dendrites.  

Scanning electron microscopy (SEM) investigation 

In the high-S low-Ti iron (B401.1), a large number of polygonal MnS inclusions were found (Fig. 8). 
More than 50% of these inclusions seem to be attached to the sides of the graphite flakes (Fig.9a). 
Complex Al-Mg-Si-Ca oxide compounds were identified at the center of some of the MnS particles 
(Fig. 9b, c and d).  

In the presence of both Ti and S (sample B401.5) a variety of inclusions with different 
morphologies was found. The smaller inclusions and their spectrum are shown in Fig. 10. The 
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majority of the inclusions in this sample are (MnTi)S, with a variety of morphologies (Fig. 11). As 
also shown in Fig. 2b, the (MnTi)S inclusions are mostly formed in the middle of the dendrites. It is 
reasonable to assume that they have acted as nuclei for the austenite dendrites. This would 
explain the significant increase in the fraction of austenite as the Ti/S ratio increased from 0.15 to 
3. MnS inclusions were also found in this iron (Fig. 11d), and again, they seemed to act as nuclei 
for the graphite.  

Deep etched microstructures of sample B401.5 (Ti/S=3) are shown in the Fig. 12. The presence of 
(MnTi)S inclusions in the austenite is confirmed (Fig. 12 a and b). It is the dominant inclusion. A 
few TiC inclusions were found in the austenite (Fig. 12 a, b), and many TiC inclusions were found 
in the proximity of the superfine graphite flakes (Fig. 12 c). Yet, as they do not show clear contact 
with graphite (they always seem to be on top and not on the side of the graphite), in our opinion, 
the appearance is not that of graphite nuclei. 

The images of the deep-etched sample B621.1 (low-S low-Ti, medium Ti/S ratio) are presented in 
the Fig. 13. The microstructure exhibits coarse type-A graphite (length 100 to 200µm) and almost 
no inclusions (Fig. 13a). This sample exhibited very few inclusions. The spectrum of the cubic 
inclusions found indicates the composition of a titanium carbonitrade Ti(NC). While the pick of Ti 
and N are at the same keV, this pick was very small in other TiC spectra.  

A dramatic change in the microstructure occurs when the Ti/S ratio is raised to 29.2 for sample 
621.5 with low-S high-Ti (0.012% S, 0.35%Ti). A large number of cubic TiC particles are observed 
(Fig. 14a). This is consistent with previous research1 where it was found that the number of Ti 
compounds increases significantly as the Ti content in the iron increases. They are the dominant 
inclusions at this composition. As also documented earlier in this report, the TiC particles are 
pushed by the austenite dendrites to the last regions to solidify (Fig. 14a). There is no evidence to 
show that TiC could act as nuclei for the primary austenite. However, isolated instances where the 
TiC is in contact with the graphite have been found (Fig.14c). We do not feel that this is enough 
proof to demonstrate a graphite nucleation effect by the TiC. A few MnS inclusions in contact with 
the graphite were also observed (Fig. 14b). The graphite flakes are thick and short (Fig. 14c, d). 

A summary of the type and location of inclusions as a function of composition and the Ti/S ratio is 
given in Table 2. Note again that the amount of inclusions in the low-S low-Ti sample (621.1) was 
minimal. 

Table 2. Summary of types and location of inclusions from SEM analysis 

Sample %S %Ti Ti/S Mn/S Graphite 
Dominant 
inclusion 

Inclusion location 
Other 

inclusions 
401.1 0.12 0.018 0.15 4.5 type-A MnS in contact with Gr none 

401.5 0.12 0.36 3 4.2 
interdendritic/ 

superfine 
(Mn,Ti)S in austenite MnS, TiC 

621.1 0.018 0.06 3.33 30.6 type-A TiC, Ti(CN) in austenite MnS 

621.5 0.012 0.35 29.2 48.3 
superfine + some 

type A 
TiC 

at austenite grain 
boundaries; 

in contact with 
graphite (?) 

MnS 

 

Some high magnification pictures of the superfine graphite are presented in Fig. 15. It is seen that 
the graphite flakes are very short, thick and that they bend and twist significantly. While most of the 
growth is along the A-direction, in some instances growth in the C-direction appears to occur (Fig. 
15b). The graphite branch growing in the C-direction shows an exposed hexagonal plane and is 
very similar to the corral graphite. A more detailed analysis is required to support this statement. 

DISCUSSION 
There are two major effects of the Ti additions that need to be understood: the increased amount 
of austenite and the formation of the superfine interdendritic graphite. Arguments involving 
nucleation and growth kinetics of the phases must be considered. 
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As shown in Table 3, Ti addition to both low and high S irons results in an increase of the liquidus 
temperature, TL, and a decrease of the minimum eutectic temperature, TEmin. The classic 
explanation for the first effect is an increase in the nucleation potential. Indeed, the Ti addition to a 
melt with sufficient S (401.5 – 0.12%S), produces complex (MnTi)S that are nucleation sites for 
austenite but not for graphite. As formation of (MnTi)S depletes the melt from sulfur, less S is 
available for the precipitation of MnS inclusions that are the main nucleant for type-A graphite. This 
results in the depression of the eutectic temperature. Thus, for high S iron, Ti additions will 
increase the amount of austenite through enhanced austenite nucleation and increased liquidus-
eutectic interval, which allows more time for austenite growth before the eutectic reaction. A higher 
amount of dendritic austenite will favor a type-A to type-D transition for graphite, as the graphite is 
constrained to grow between the dendrite arms. Titanium absorption on the graphite plates could 
also interfere with graphite growth, similar to the mechanism described by Park and Verhoven25 for 
sulfur. 

Table 3. Thermal analysis data and fraction of austenite 

Sample no. 
TL 
oC 

TEmin 
oC 

TL - TEmin 
oC 

Austenite 
fraction 

401.1 1182 1147 35 0.17 
401.5 1192 1145 47 0.27 
621.1 1187 1148 39 0.27 
621.5 1198 1144 54 0.38 

 

For the low S irons, the situation is less clear. While the higher amount of austenite produced by Ti 
additions can still be attributed to the higher liquidus-eutectic interval (see Table 3), the reasons for 
the increase remain partially unexplained. The probable explanation for the higher liquidus is 
increased nucleation. Yet, we were not able to identify nucleation sites for the austenite in iron 
621.5. The higher TEmin in the absence of Ti, and the highest TEmin for the highest purity iron from 
the series (621.5) can be understood through equilibrium thermodynamics. Indeed, low S and Ti 
content decrease the stable eutectic temperature by similar amounts (see Table 3 page 65 in 
ref.26) and thus, purer irons should have higher eutectic equilibrium temperature. The kinetic effect 
of Ti absorption on the graphite will also act in the same direction and is probably responsible for 
the formation of the superfine graphite. 

The fact that Ti addition produced larger eutectic cells supports the theory that Ti is not producing 
finer graphite because of a change in the nucleation potential, but because of lower growth rate of 
the graphite in between the dendrite arms of a larger fraction of austenite. 

CONCLUSIONS 
It was confirmed that when sufficient sulfur is present in the iron nucleation occurs on Mn sulfides 
that have a core of complex Al, Ca, Mg oxide. Both type-A and type-D graphite were observed to 
grow on the Mn sulfide. An increased titanium level of 0.35% produced superfine interdendritic 
graphite (~10μm) at low as well as at high S contents. The shape of the graphite was also 
dramatically altered. Ti also produced larger eutectic grains (cells).  

While TiC additions increased the liquidus temperature, TiC did not appear to be a nucleation site 
for the primary austenite as it was found mostly at the periphery of the secondary arms of the 
austenite, in the last region to solidify. The effect of titanium in refining the graphite and increasing 
the austenite fraction can be explained through the widening of the liquidus-eutectic temperature 
interval (more time for austenite growth) and the decrease in the growth rate of the graphite. 

In the presence of high Ti and S, (MnTi)S star-like and rib-like inclusions were found in the middle 
of the austenite dendrites. It is reasonable to assume that they are acting as nuclei for the 
austenite. 
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Fig. 3. Microstructure of high Ti/S sample 621.5 – 0.012%S, 0.35%Ti; unetched. 
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Fig. 11. Unetched SEM micrographs of sample 401.5 showing (Mn,Ti)S and MnS inclusions 
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A TEM Study on Ti-alloyed grey iron  

 

E. Moumeni, N.S. Tiedje, F.B. Grumsen, H.K. Danielsen, A. Horsewell, J.H. Hattel 

Technical University of Denmark, DTU Mechanical Engineering, Kgs Lyngby, Denmark 

Abstract 

In this investigation the microstructure of the graphite flakes in titanium alloyed cast iron is studied 

using electron microscopy techniques. Dual beam SEM/FIB has been used for TEM sample 

preparation. TEM study has been carried out on graphite flakes in grey cast iron using selected area 

electron diffraction. Based on the selected area diffraction pattern analysis, crystallographic 

orientations are identified and compared. The orientation relationship between iron and graphite 

crystals at the interface is studied and discussed. 

It is observed that the graphite microstructure in the Ti-containing iron consists of both hexagonal 

and rhombohedral crystal structures, but there is expansion in the unit cell. The high-Ti and low-Ti 

specimens are compared and the differences are discussed. 

 

Keywords: cast iron, FIB, SEM, TEM, SAD, Dark field and bright field images, Diffraction pattern  

1.  Introduction 

 

Alloying elements are responsible for the amount and shape of precipitated graphite in cast iron, as 

well as for the microstructure of iron matrix and formation of inclusions [1] [2]. Shape, size and 

distribution of graphite are some of the important parameters that determine the mechanical 

properties of cast iron [2] [3] [4] and they can be modified by addition of alloy elements. 

Considerable research has been done to describe the effect of alloy elements on graphitic cast iron. 

However, the relationship between alloy elements and properties of samples cannot be simplified 

due to interaction between individual parameters.  

Titanium is one of the elements which can significantly affect the shape and size of graphite [5]. 

Addition of Ti considerably decreases graphite nucleation and growth [6]; it changes the shape and 

size of graphite to become superfine interdendritic and increases the undercooling [7] [8]. Ti in 

grey iron increases the tendency of branching in graphite precipitates [9]. It has also been reported 

that addition of Ti to some extent increases the fraction of primary austenite [8]. Titanium in cast 

iron melts reacts with sulphur, carbon and manganese. Therefore, it decreases the amount of 

sulphur available for forming graphite nuclei and for modifying the graphite shape. Sommerfield 

and Tonn [10] used thermodynamic simulation to show that before the onset of austenite formation, 

Ti4C2S2 will form at 1185C. Nakaee and Fujimoto [11] showed that the maximum undercooling 

(ΔTMAX) and the critical temperature for the A-type to D-type graphite transition (TA/D) increase 

with the Ti addition. In this work Ti alloyed grey iron has been studied in order to learn the 

structure of graphite and the orientation relationship between iron and graphite. For this purpose, a 

comprehensive TEM study is carried out to understand the characteristics of this group of irons 

including interdendritic superfine graphite. 

The crystallographic structure of graphite has been studied by many scientists [12] [13] [14] [15]. It 

has been suggested that the growth of graphite is mainly determined by the composition of the 
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liquid iron in which the graphite grows during solidification [16]. For the flaky graphite, the growth 

direction of the graphite lattice is observed to be mainly perpendicular to the graphite–basal planes 

[3]. In cast irons and natural graphite, crystallographic defects such as stacking faults, twins, 

various tilt and rotation boundaries have been observed in the graphite structure [17] [18] [19]. 

These defects provide important information on the growth mechanism. It is therefore of great 

interest to study graphite crystallography in detail to improve our understanding of the growth 

mechanisms behind graphite growth. 

The usual structure of graphite which is hexagonal was proposed by Hull [20] and confirmed by 

Bernal [21] and Hassel and Mark [22]. It basically consists of basal layers of carbon atoms bonded 

in a continuous hexagonal network. The layers are stacked ideally in an ABAB sequence but since 

the layers are relatively widely spaced and bonds are weak they may easily slide or tilt relative to 

one another. Double and Hellawell [17] suggested that growth mechanism of spheroidal graphite 

was mainly based on a cone-helix model. They showed the filamentary segments of graphite by 

optical microscopy. The same authors [12] have also shown that all forms of graphite, precipitating 

from a metallic solution, must evolve from a basic hexagonal ring structure, and grow into an open 

monolayer sheet. Subsequent growth of this precursor can lead to a multi-layer sheets-flake 

graphite crystal, to rolled or wrapped concentric shells spheroidal graphite. They believe that 

spheroidal graphite is the preferred morphology in a clean melt, while flake graphite is an impurity 

modified form. 

Later, lines were reported on X-ray photographs that did not correspond with the hexagonal 

structure. However, it was possible to index them in terms of a rhombohedral cell using the same 

continous hexagonal network but with an ABCABC stacking sequence [23] [24]. A schematic 

picture of these two models is shown in Fig. 1. 

In the sixties, with improved microscopy techniques, dislocation structure and twins in graphite 

were observed [23]. In a graphite crystal, with the layers of planes arranged in the hexagonal 

stacking sequence, the associated stacking fault will create a region with a rhombohedral stacking 

sequence. 

 

           
a) Hexagonal                                   b)   Rhombohedral   

Fig. 1. Two models for graphite crystal structure (made by the software JEMS [26]) 
 

It is suggested [18] [24] [25] that twinning plays an important role in formation of spheroidal 

graphite. It is argued that spiral growth along the axis of screw dislocations emerging from the 

nucleus is responsible for formation of nodular graphite too [26]. Velichko [27] believed that in the 

crystal of flaky graphite there is intermediate rotation around the c-axis. Amini and Abbaschian 

[28] proposed a three-stage model for formation of the graphite spheres including: i) basal and 

prismatic planes leading to isotropic growth,  ii) circumferential growth of graphite tiles, and iii) 

radial growth of pillars. 

Several different reactions normally contribute to graphite formation in cast irons. The bulk of the 

graphite formed by eutectic solidification forms the inner part of the larger particles, while 

precipitation from austenite and the stable eutectoid reaction deposit the outer layers. Therefore, the 

remaining iron/graphite interface forms in the solid state [29]. Thus, in order to understand the 

evolution of the interface, all three phases must be considered. 

Ferrite/graphite interfaces in commercial cast irons have been shown to prefer two particular 

orientation relationships [29]. Both relationships are found in grey and ductile irons. Adsorption of 
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impurities at the graphite/liquid interface affects the formation of lamellar graphite. Sulphur and 

oxygen are found by Scanning Auger Microscopy (SAM) to be adsorbed at the graphite/melt 

interface during solidification of grey iron [30].The adsorbed elements influence the growth sites 

on the basal planes and thereby stabilize the interface, resulting in the formation of flakes 

2.  Experiments 

 

The bulk samples for these experiments are from the low and high-Ti content flaky graphite cast 

iron. The samples were cast as tensile test specimens. The chemical composition of the samples is 

presented in Table 1. 

Table 1. Chemical compositions 
Sample C Si Mn Ti 

Low-Ti iron 3.44 2.07 0.54 0.02 

High-Ti iron 3.45 2.03 0.58 0.35 

 

In this work a dual beam microscope in which both electron beam and focused ion beam columns 

are applied is used for TEM sample preparation. The TEM samples were studied using an FEI 

Tecnai T20 G2 located at DTU-CEN and a JEOL JEM 3000F TEM (300 kV) located at DTU-Risø.  

The sample preparation was carried out at DTU-CEN using an FEI Helios EBS3 dual beam 

FIB/SEM microscope.  

 

2.1.  Sample preparation using dual beam (FIB-SEM) instrument 

 

The dual beam microscope combines a focused ion beam (FIB) column and a scanning electron 

microscope column in one unit [31]. This combined system enables us to carry out TEM sample 

preparation, precision cross-sectioning and automated 3D process control. The Ga+ ion beam is 

applied for material removal and imaging, while the electron beam in the SEM column is used for 

imaging and spectroscopic analysis using generated x-rays detected in the energy dispersive x-ray 

detector (EDX).  

While preparing the TEM sample, it is important that the ion-beam does not pollute it with Ga ions, 

which can be avoided by low voltage and current cleaning at the final stages of preparation.  

 

2.1.1.  In-situ ‘lift-out’:  

 

One of the main advantages of the ‘lift-out’ technique over other sample preparation methods is 

that most of the time the original bulk sample does not need to be initially prepared itself or only a 

minor preparation is needed. 

Before starting the sample preparation, one has to decide on the final dimensions of the sample. 

The final dimensions of the FIB lift-out will depend on several parameters such as the dimensions 

of the final sample; the analysing method that will be applied to study the lift-out specimen (the 

TEM samples for this work were thinned down to about 80-130nm), the size of the features of 

interest and the FIB milling time available.  

Most FIB lift-outs begin with using the ion beam assisted chemical vapour deposition (CVD) 

process to deposit a 0.5-2 µm thick platinum metal line onto the specimen surface (Fig. 2.a). The 

platinum line may be used to mark the region of interest, and to protect the underlying region from 

being sputtered away during subsequent milling steps. Next, high beam currents with 
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correspondingly large beam sizes are used to mill large amounts of material away from the front 

and back portion of the region of interest (Fig. 2.b). The front and back trenches are usually 

positioned about 0.5 µm from the Pt layer. Once the specimen reaches a thickness of about 1 µm 

due to the FIB milling at the both sides, it is tilted 45º or more with respect to the ion beam. Then, 

the remaining edges of the specimen are cut free. The Omniprobe manipulator, which is used to 

handle the sample, is positioned to touch the FIB-milled sample foil. The FIB is then used to attach 

the Omniprobe to the sample by deposition of Pt using the FIB’s CVD and the sample will be lifted 

out by manipulating the Omniprobe (Fig. 2.c). Then, the Omniprobe/sample assembly is positioned 

onto a grid and the CVD operation is again used to attach the sample to the grid. The sample will 

then be FIB milled to electron transparency using lower voltage and low beam density FIB milling 

practices (Fig. 2.d). 

 

a) Pt deposition (First high-Ti sample)               

 

b) Milling the material away from the 

front and back portion of the region of 

interest 

 

c)Sample, attached to the Omniprobe, 

lifted out of the bulk material 

 

d) TEM image of the sample prepared 

for TEM study at low magnification. 

Fig. 2. In-situ lift-out sequences 

 

 

2.2.  TEM investigation 

 

Transmission electron microscopy (TEM) is one of the important techniques for studying 

microstructure at the very small scales (down to nano-) in great detail. Using TEM, we look 

through a piece of material with electron beams, usually at high magnification (in our experiments 

up to 30000x). The techniques that we have applied in this work are bright field (BF) and dark field 

(DF) imaging and selected area electron diffraction patterns (SAED). 

In bright field imaging, electrons pass through the specimen and they can be scattered or absorbed 

by the specimen and at suitable specimen orientations can undergo Bragg diffraction. An image 

created by electrons from the direct beam is called a bright-field image. If a diffracted beam is used 

it will create a dark-field image [32]. With dark field images, specific crystallographic planes that 

are oriented such that they are diffracting, and can be viewed in order to see specific features such 

as dislocations, regions of ordering or strain fields etc. Dark field images typically have 

considerably higher contrast than bright field images although the overall intensity is greatly 

reduced. The beam can be moved relative to the objective aperture so that either electrons that have 

gone directly through the sample are viewed (BF) or so that electrons diffracted by specific 

crystallographic planes go through it (DF).  

Diffraction contrast arises because the intensity of the diffracted beams depends on the orientation 

of the diffracting planes in different regions of the specimen. Also, local variations in orientation 

around defects cause local changes in Bragg conditions, allowing us to identify types of defects 

within crystals. From diffraction patterns we can 1) measure the spacing between crystal layers; 2) 

determine the orientation of a single crystal or grain; 3) find the crystal structure of an unknown 

material and 4) measure the size, shape and internal stress of small crystalline regions. 
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3.  Results and discussion  

 

3.1.  TEM imaging 

 

The TEM bright field imaging was carried out to get an overview of the graphite microstructure. 

The low-Ti and high-Ti samples were investigated to find their overall differences and similarities. 

The sampling areas of interest are depicted in Fig. 2a and Fig. 3. The low-Ti TEM sample is taken 

from a relatively coarse flake longitudinally. Thus, it does not include any graphite/iron interface. 

The high-Ti samples include the graphite/iron interface. This has enabled us to study the 

orientation relationships between two phases.   

In Fig. 4, Fig. 5 and Fig. 6 some of the bright field images of the above mentioned samples are 

shown. In the Fig. 4a from the low-Ti sample, a long grain (more than 1 μm) of graphite can be 

seen. The high-Ti samples have finer microstructure. The twin boundaries can be seen in the Fig. 

4b and they outline the very fine grains indicating that twinning plays an important role in the 

growth of the graphite lamellae.  

 

       

a) Low-Ti sample                          b)   Second high-Ti sample 

Fig. 3. Sampling area of the TEM specimens.  

 

       

a) Low-Ti sample, large graphite grains       b)    High-Ti sample, graphite/iron grains 

Fig. 4. TEM bright field images 
 

The lamella, part of which is shown in Fig. 5, includes a longitudinal cross section of graphite and 

its interface with the iron matrix from both sides. The high disorder in the microstructure is seen in 

this area. In the high-Ti samples, a larger number of voids and defects is found too.  The platelets 

of graphite are predicted to have weak and brittle attachment to each other. The cracks or voids 

which are seen in Fig. 5 may occur during the growth of the graphite or during TEM sample 

preparation. Considering the fact that graphite is a very brittle material, one could say that the 

fractures or voids in the crystals would happen during solidification as stresses caused by cooling 

and growth of the solid phase imposes stresses on the graphite which may deform and break.  

Twinning seems to be one of the main mechanisms of the anisotropic growth of this type of 

graphite which has happened at high undercooling (Fig. 6). These are seen as simple planar 

interfaces, often with parallel twin boundaries. One possibility is that growth of the precipitated 

graphite could also be determined or facilitated by some form of repeated crystal twinning.  

 

 

 
           
a) High-Ti sample, voids and defects        b) High-Ti sample, the marked area in fig 7a 

Fig. 5. High-Ti sample, bright field imaging 
 

   
           

 

Fig. 6. High-Ti samples, bright field image 
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A detailed crystallographic analysis was done on the samples. Diffraction patterns were taken in 

several different areas to analyse grain boundaries and coherency between the two phases. The 

Kikuchi lines in the iron structure close to the interface of iron/graphite were followed when tilting 

the sample in order to find the major zone axes of iron. Kikuchi patterns in the graphite areas were 

not clear enough for this method. SAED patterns were acquired in both iron and graphite at either 

side of the interface at the iron zone axes. When doing SAED on the graphite, diffraction patterns 

belonging to both the rhombohedral and hexagonal crystal structure of graphite were found. The 

graphite structure was found to consist of several elongated grains which had similar but slightly 

different orientation relationships. Some of the grains had a rhombohedral crystal structure and the 

orientation of these grains was similar to the hexagonal grains, the (001) planes being almost 

parallel. There was no specific orientation relationship between the iron and the investigated 

graphite grains, but since the orientation relationship between the graphite grains themselves varied 

slightly, perhaps some of them do correlate with the iron crystal structure. 

In order to identify the grains belonging to hexagonal and rhombohedral crystal structures, dark 

field imaging technique was applied. The graphite structure in the high-Ti samples was found to be 

expanded considerably in the “c” direction, that is the (001) interplanar spacings were larger than 

expected. The value of expansion varies in different areas; the expansion measured in the 

diffraction pattern images was up to 8% in the “c” direction. The expansion in the “a” direction, 

along (001) planes, was significantly lower at below 3%. The expansion was not found in the low-

Ti specimens. Interstitial Ti atoms in the graphite structure were thought to be a possible reason for 

this expansion, but in fact no titanium was detected in the graphite areas by EDS. It can be 

speculated that the many defects in the graphite crystal structure such as stacking faults might 

cause the expansion in the high-Ti samples, too. 

Fig. 7 shows an area with three different diffraction patterns. Pattern 1 belonging to the 

rhombohedral unit cell while patterns 2 and 3 belong to the hexagonal unit cell. The dark field 

images show that the rhombohedral grain is very elongated and has a very straight interface with 

both hexagonal grains on either side of it. 

  

 

 
  

a)                                                   b)                                                  c)  
 

   

    d)                                                         e)                                                  f)  

Fig. 7. a) SAED pattern of the shown area in the bright field image (b) contains three different 
diffraction patterns (indexed in image d). Dark field imaging was carried out on each of the 
patterns (c, e & f). 
 

 

Fig. 8 shows an area with many smaller grains where the diffraction pattern (not in zone axis) 

shows a ring pattern with clear preferred orientations. This indicates that the graphite grains have 

some preferred orientations to each other, but do not have completely the same orientation. Some 

diffraction from iron is also visible in the pattern as single spots, not ring patterns. 
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a)                                                b)                                                     c) 
 

   

     d)                                                     e)                                                      f)  

Fig. 8. TEM images of ferrite/graphite interface: a) the bright field image (BF) shows the region that the 
diffraction pattern (SAED) is taken from (b). Dark field imaging (DF1 - 4) ;  c) area 1 originates from the iron 
matrix while d, e, f) are from diffraction spots 2, 3 & 4 from the graphite.  

 

 

 

4.  Conclusions 

The graphite particles in Ti-containing cast iron were investigated and found to consist of many 

small grains which have slightly different orientation relationships. Most of these grains have a 

hexagonal crystal structure, but a few of them have a rhombohedral crystal structure. There seems 

to be a good correlation between the orientation of two crystal structures, the (001) planes being 

almost parallel. There did not seem to be any specific orientation relationship between the 

investigated graphite grains and the iron matrix.  
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